earticle

논문검색

SESSION A-2 : 교통 빅데이터 및 AI(Ⅱ)

Attention기반 Small Object Detection에 관한 연구

원문정보

A study on Small Object Detection based Attention

김민서, 성주현

피인용수 : 0(자료제공 : 네이버학술정보)

초록

한국어

컴퓨터 비전(computer vision)분야의 객체인식 기술은 최근 객체인식 자체의 성능 향상과 여러 모델의 결합 등 기술이 고도화 되고 있다. 그러나 이미지 내 객체의 크기가 작은 경우에는 그 객체에 대해 얻을 수 있는 정보의 절대적인 양이 적고, 적은 범위 내부 정보가 특징(feature)을 추출하는 과정에서 왜곡이 발생하여 오히려 특징이 흐려지는 등 객체에서 얻을 수 있는 정보가 적거나 왜곡되어 저하되는 검출 성능을 개선하기 위해 기존 객체 인식 모델에 attention 기법 을 적용하여 작은 객체에 대한 정보를 더 집중적으로 추출하여 검출 성능을 높이고자한다. 객체의 검출 성능을 분석하기 위해 객체의 검출 성능을 기존 객체 인식 모델과 attention 기법 을 적용한 객체 인식 모델의 성능을 비교·분석한다. 특히 객체의 크기를 크게 세 가지(small, medium, large)로 분류 하고 모두 학습하여 모델 별로 각 크기군의 객체의 검출 성능을 비교한다.

목차

ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 실험
Ⅳ.결론
ACKNOWLEDGEMENTS
REFERENCES

저자정보

  • 김민서 한국해양대학교 해사인공지능·보안학과
  • 성주현 한국해양대학교 해사인공지능 보안학부 & 해양인공지능 융합전공

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.