earticle

논문검색

Prediction of Corporate Bankruptcy with Machine Learning

초록

영어

This study examines the predictability of various machine learning and deep learning models in corporate default forecasts. Using a sample of U.S. corporate defaults over the period of 1963-2020, we find Ensemble classifier and Bi-LSTM classifier forecast the corporate bankruptcy better than other models and the predictability of the Ensemble classifier is more stable in year-to-year variability. Further, machine learning models outperform deep learning models in high yield grade samples, while deep learning models performs better than machine learning models in investment grade samples.

목차

Abstract
1. Introduction
2. Data
3. Empirical Method
3.3. Machine Learning for Classification
3.4. Deep Learning for Classification
3.5 Optimal Hyperparameters and Cross Validation
4. Empirical Results
4.1. Predictability Test with Whole Data Set
4.2. Predictability Test with Year-split Data Set
4.3. Predictability Test with Rating-split Data Set
5. Conclusion
References

저자정보

  • Haein Lee Department of Applied Artificial Intelligence Sungkyunkwan University
  • Byunghoon Yu Department of FinTech Sungkyunkwan University Seoul, Korea
  • Jang Hyun Kim Department of Applied Artificial Intelligence Sungkyunkwan University
  • Heungju Park Department of FinTech SKK Business School Sungkyunkwan University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 5,500원

      0개의 논문이 장바구니에 담겼습니다.