원문정보
A Study on Falling Detection of Workers in the Underground Utility Tunnel using Dual Deep Learning Techniques
초록
영어
Purpose: This paper proposes a method detecting the falling of a maintenance worker in the underground utility tunnel, by applying deep learning techniques using CCTV video, and evaluates the applicability of the proposed method to the worker monitoring of the utility tunnel. Method: Each rule was designed to detect the falling of a maintenance worker by using the inference results from pre-trained YOLOv5 and OpenPose models, respectively. The rules were then integrally applied to detect worker falls within the utility tunnel. Result: Although the worker presence and falling were detected by the proposed model, the inference results were dependent on both the distance between the worker and CCTV and the falling direction of the worker. Additionally, the falling detection system using YOLOv5 shows superior performance, due to its lower dependence on distance and fall direction, compared to the OpenPose-based. Consequently, results from the fall detection using the integrated dual deep learning model were dependent on the YOLOv5 detection performance. Conclusion: The proposed hybrid model shows detecting an abnormal worker in the utility tunnel but the improvement of the model was meaningless compared to the single model based YOLOv5 due to severe differences in detection performance between each deep learning model
한국어
연구목적: 본 논문은 CCTV 영상을 활용한 딥러닝 객체 인식 기술을 적용해 지하공동구 내 쓰러진 관리 인력의 검출 방법을 제시하고, 제안 방법의 관리인력 모니터링 적용성을 평가한다. 연구방법: 사람 검 출 목적으로 사전 훈련된 YOLOv5와 OpenPose 모델의 추론 결과로부터 쓰러짐을 판별할 수 있는 규칙 을 제안하고, 각 모델의 결과를 통합해 지하공동구 내 작업자 쓰러짐 검출에 적용하였다. 연구결과: 제 안된 모델로 작업인력의 감지 및 쓰러짐을 판단할 수 있었으나, CCTV와 작업자 간격 및 작업자가 쓰러 진 방향에 의존해 검출성능이 영향을 받았다. 또한 지하공동구 작업자에 대해 YOLOv5 기반 쓰러짐 판 별 규칙 적용 모델이 거리 및 쓰러짐 방향 의존성이 낮아 OpenPose 기반 모델에 비해 우수한 성능을 보 였다. 그 결과 통합된 이중 딥러닝 모델의 쓰러짐 검출 결과는 YOLOv5 결과에 종속되었다. 결론: 제안 모델을 통해 지하공동구 작업자의 이상상황 검출이 가능함을 보였으나, 개별 딥러닝 모델별 사람 감지 성능 차이로 인해 YOLOv5 기반 모델 대비 통합 모델의 쓰러짐 검출 성능 개선은 미미하였다.
목차
요약
서론
관련 연구 고찰
쓰러짐 감지 선행 연구
이중 딥러닝 모델을 활용한 하이브리드 쓰러짐 검출 시스템
규칙기반 이중 딥러닝 모델을 활용한 쓰러짐 감지 모델 제안
사전훈련 딥러닝 모델에 활용된 데이터셋 분석
쓰러짐 규칙 정의
이중 딥러닝 모델의 지하공동구 작업자 쓰러짐 감지 모델 성능 평가
성능평가 방법
사람 검출 성능 분석
쓰러짐 검출 성능 평가
결론
Acknowledgement
References
