원문정보
초록
영어
In this study, we conducted research on the automated trading of U.S. stocks through a volatility strategy using the Fear and Greed index. Volatility in the stock market is a common phenomenon that can lead to fluctuations in stock prices. Investors can capitalize on this volatility by implementing a strategy based on it, involving the buying and selling of stocks based on their expected level of volatility. The goal of this thesis is to investigate the effectiveness of the volatility strategy in generating profits in the stock market.This study employs a quantitative research methodology using secondary data from the stock market. The dataset comprises daily stock prices and daily volatility measures for the S&P 500 index stocks. Over a five-year period spanning from 2016 to 2020, the stocks were listed on the New York Stock Exchange (NYSE). The strategy involves purchasing stocks from the low volatility group and selling stocks from the high volatility group. The results indicate that the volatility strategy yields positive returns, with an average annual return of 9.2%, compared to the benchmark return of 7.5% for the sample period. Furthermore, the findings demonstrate that the strategy outperforms the benchmark return in four out of the five years within the sample period. Particularly noteworthy is the strategy's performance during periods of high market volatility, such as the COVID-19 pandemic in 2020, where it generated a return of 14.6%, as opposed to the benchmark return of 5.5%.
한국어
본 연구에서는 변동성 전략과 Fear and Greed 지수를 통하여 미국 주식의 매매를 자동으로 하는 연구를 진행하였다. 주식 시장의 변동성은 주가 변동을 유발할 수 있는 일반적인 현상이다. 투자자는 예상되는 변동성 수준에 따라 주식을 사고 파는 변동성 전략을 구현함으로써 이러한 변동성을 이용할 수 있다. 이 논문의 목적은 주식 시장에서 수익을 창출하는 변동성 전략의 효과를 탐구한다. 본 연구는 주식시장의 2차 데이터를 활용한 정량적 연구 방법론을 채택하여, 데이터에는 2016년부터 2020년까지 5년 동안 뉴욕증권거래소(NYSE)에 상장된 S&P 500 인텍스 주식에 대한 일일 주가 및 일일 변동성 측정치가 포함 하였다. 전략은 변동성이 낮은 기간에서 주식을 사고 높은 변동성 기간에서 주식을 매도하는 것을 포함하였다. 결과는 변동성 전략이 샘플 기간 동안의 벤치마크 수익률 7.5%에 비해 연평균 9.2%의 긍정적인 수익률을 창출하였다. 따라서 전략이 샘플 기간의 5년 중 4년에서 벤치마크 수익률을 능가한다는 것을 나타났다. 이 전략은 2020년 COVID-19 대유행과 같이 시장 변동 성이 높은 기간 동안 특히 잘 수행되어 벤치마크 수익률 5.5%에 비해 14.6%의 수익률을 기록하였다.
목차
요약
1. Introduction
2. Literature Review
2.1. Volatility and Stock Prices
3. Methodology
3.1. Python Code for Volatility Strategy
3.2. Volatility Strategy
3.3. Problems with DNN(Deep Neural Network) or CNN(Convolutional Neural Network) based Stock Prediction
3.4. Proposed Algorithm for Stock Trading Strategy
4. Results and Discussion
4.1. Descriptive Statistics
5. Conclusion
REFERENCES