원문정보
Course recommendation system using deep learning
초록
영어
We study a learner-customized lecture recommendation project using deep learning. Recommendation systems can be easily found on the web and apps, and examples using this feature include recommending feature videos by clicking users and advertising items in areas of interest to users on SNS. In this study, the sentence similarity Word2Vec was mainly used to filter twice, and the course was recommended through the Surprise library. With this system, it provides users with the desired classification of course data conveniently and conveniently. Surprise Library is a Python scikit-learn-based library that is conveniently used in recommendation systems. By analyzing the data, the system is implemented at a high speed, and deeper learning is used to implement more precise results through course steps. When a user enters a keyword of interest, similarity between the keyword and the course title is executed, and similarity with the extracted video data and voice text is executed, and the highest ranking video data is recommended through the Surprise Library.
한국어
딥러닝을 이용한 학습자 맞춤 강의 추천 프로젝트를 연구한다. 추천시스템은 웹과 앱에서 쉽게 발견할 수 있으며 이 특성을 이용한 예제는 사용자 클릭으로 특성 영상 추천과 SNS에서 평소 사용자가 관심 있던 분야의 아이템을 광고하 는 것이 있다. 본 연구에서는 문장 유사도인 Word2Vec를 주로 이용하여 2번의 필터링을 거쳤으며 Surprise 라이브러 리를 통해 강좌 추천을 하였다. 이러한 시스템으로 사용자에게 간편하고 편리하게 원하는 분류의 강좌 데이터를 제공한 다. Surprise 라이브러리는 Python scikit-learn 기반의 라이브러리이며 추천시스템에 편리하게 사용된다. 데이터를 분석하여 시스템을 빠른 속도로 구현하고 딥러닝을 사용하여 강좌 단계를 거쳐 보다 더 정밀한 결과를 구현해낸다. 사용 자가 관심 있는 키워드를 입력하면 해당 키워드와 강좌 제목과의 유사도를 실행하고 추출된 영상 데이터로 또 음성 텍스 트와의 유사도를 실행하여 추출된 데이터로 Surprise 라이브러리를 통해 가장 높은 순위의 영상 데이터를 추천한다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
1. 데이터 수집
2. 크롤링(Crawling)
3. 추천알고리즘
4. Word2Vec(Word to vector)
5. Surprise 라이브러리
Ⅲ. 연구 설계
Ⅳ. 실험 및 결과
Ⅴ. 결론
References