원문정보
Analysis Modeling of Variable Goods Value to extract Key Influencers based on Time series Big Data
초록
영어
Research to analyze the future prediction of value is being conducted in various. However, it was found through the research results of each field that such future value analysis has too many variables according to each field, so the accuracy of the prediction result is low, and it is difficult to find objective key influencing factors that affect the result. In particular, since objective standards for the importance of various influencing factors have not been established, the key influencing factors have been judged and applied based on the researcher's subjectivity. Accordingly, there is a need for a reasonable process model for extracting key influencing factors that affect the prediction of volatility goods value that can be objectively applied in various fields. In this study, process modeling for extracting key influencing factors was conducted in seven steps, and the method for extracting key influencing factors was explained in detail in each step. In addition, as a result of simulation by applying Ni metal among the major variable goods in the field of raw materials using the proposed modeling, the predicted value by the existing method was 0.872% and the predicted value by applying the modeling of this study was 0.864%. conformance was confirmed.
한국어
변동성 가치에 대한 미래 예측을 분석하는 연구는 여러 분야에서 이루어지고 있다. 하지만 이러한 미래 가치분석 은 각 분야의 연구결과를 통해 각 분야에 따른 변수가 너무 많아 예측결과의 정확도가 낮으며 결과에 영향을 미치는 객관적인 핵심영향요소를 찾아내는 데 어려움이 있음을 알 수 있었다. 특히 다양한 영향인자의 중요도에 대한 객관적인 기준이 마련되지 않아 연구자의 주관에 의지하여 핵심영향인자를 판단하여 적용하는 실정이다. 이에 여러 분야에서 객관 적으로 적용할 수 있는 변동성 재화가치 예측에 영향을 미치는 핵심영향인자 추출을 위한 합리적인 Process 모델이 필요하게 되었다. 본 연구에서 총 7단계로 핵심영향인자 추출을 위한 Process 모델링을 제시 하였으며, 각 단계별로 핵심영향인자 추출을 위한 방법을 구체적으로 정의하였다. 또한, 제안된 모델링을 이용하여 원자재 분야의 주요 변동재 화 중 Ni금속을 적용하여 Simulation을 한 결과 기존 방식에 의한 예측 값 0.872%, 본 연구 모델링을 적용한 예측 값 0.864%로 예측 결과 값이 모델에서 제시한 기준에 부합함을 확인 하였다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
1. 상관분석
2. ARIMA 모형
3. 다중 회귀분석
Ⅲ. 관련 연구
Ⅳ. 본론
1. 영향인자 추출
2. 핵심영향인자 선정
3. 최우선 핵심영향 인자 선정
4. 실제 값에 영향을 주는 보상인자 추출 분석
5. 최우선 핵심영향인자 그룹선정
6. 선정된 최우선 핵심영향인자 그룹을 이용한결과 값 비교검증(Simulation)
7. 상관정책인자 Group 주기적 재검증 및 지정
Ⅴ. Simulation 및 결과
Ⅵ. 결론 및 고찰
References
