원문정보
초록
영어
Background: This study was conducted to confirm the service quality management of care workers, who are direct service personnel of long-term care insurance for the elderly, using unstructured big data. Methods: Using a textome, this study collected and analyzed unstructured social data related to care workers’ service quality. Frequency, TF-IDF, centrality, semantic network, and CONCOR analyses were conducted on the top 50 keywords collected by crawling the data. Results: As a result of frequency analysis, the top-ranked keywords were ‘Long-term care services,’ ‘Care workers,’ ‘Quality of care services,’ ‘Long term care,’ ‘Long term care facilities,’ ‘Enhancement,’ ‘Elderly,’ ‘Treatment,’ ‘Improvement,’ and ‘Necessity.’ The results of degree centrality and eigenvector centrality were almost the same as those of the frequency analysis. As a result of the CONCOR analysis, it was found that the improvement in the quality of long-term care services, the operation of the long-term care services, the long-term care services system, and the perception of the psychological aspects of the care workers were of high concern. Conclusion: This study contributes to setting various directions for improving the service quality of care workers by presenting perceptions related to the service quality of care workers as a meaningful group.
한국어
연구배경: 본 연구는 비정형 빅데이터를 활용하여 노인장기요양보험의 직접적 서비스 인력인 요양보호사의 서비 스질 관리를 확인하고자 수행되었다. 연구방법: 요양보호사의 서비스질과 관련된 소셜 비정형 데이터를 텍스톰을 사용하여 수집·분석하였다. 데이터 를 크롤링하여 수집된 상위 50개 키워드들 간의 빈도분석, TF-IDF, 중심성 분석, 의미연결망분석과 CONCOR 분석을 실시하였다. 연구결과: 빈도분석 결과 상위권에 속한 키워드는 ‘요양서비스’ ‘요양보호사’, ‘서비스질’, ‘요양보호’, ‘장기요양기 관’, ‘향상’, ‘어르신’, ‘처우’, ‘개선’, ‘필요’ 였으며, 연결중심성과 위세중심성 분석결과도 거의 동일한 순위로 확인 되었다. CONCOR 분석결과 4개의 그룹으로, 요양서비스질 개선, 요양서비스 운영, 요양서비스 제도, 요양보호 사의 심리적인 부분에 대한 인식이 높은 것으로 나타났다. 결론: 본 연구는 요양보호사의 서비스질과 관련한 인식을 의미있는 그룹으로 제시하였으며 이는 요양보호사 서비스질 향상을 위한 다각적인 방향성 수립에 기여할 것으로 판단된다.
목차
2. 연구대상 및 방법
2.1. 연구대상
2.2. 연구방법
3. 연구 결과
3.1. 상위 키워드 빈도분석 및 TF-IDF 분석
3.2. 중심성 분석과 의미연결망 분석
3.3. CONCOR 분석
4. 고찰
감사의 글
References
초록
Abstract