원문정보
A Study on the Development of an Automatic Classification System for Life Safety Prevention Service Reporting Images through the Development of AI Learning Model and AI Model Serving Server
초록
영어
Purpose: The purpose of this study is to enable users to conveniently report risks by automatically classifying risk categories in real time using AI for images reported in the life safety prevention service app. Method: Through a system consisting of a life safety prevention service platform, life safety prevention service app, AI model serving server and sftp server interconnected through the Internet, the reported life safety images are automatically classified in real time, and the AI model used at this time An AI learning algorithm for generation was also developed. Result: Images can be automatically classified by AI processing in real time, making it easier for reporters to report matters related to life safety.Conclusion: The AI image automatic classification system presented in this paper automatically classifies reported images in real time with a classification accuracy of over 90%, enabling reporters to easily report images related to life safety. It is necessary to develop faster and more accurate AI models and improve system processing capacity.
한국어
연구목적: 생활안전 예방서비스 앱에서 신고되는 이미지를 AI를 사용하여 실시간으로 위험 카테고리를 자동으로 분류하여 사용자에게 편리한 위험신고를 가능하게 하는 것을 목적으로 한다. 연구방법: 인터넷 으로 상호연결되는 생활안전 예방서비스 플랫폼, 생활안전 예방서비스 앱, AI 모델 서빙 서버와 sftp 서버 로 구성되는 시스템을 통하여 신고된 생활안전 이미지를 실시간으로 자동분류하며, 이때 사용되는 AI모 델 생성을 위한 AI 학습 알고리즘도 개발하였다. 연구결과: 이미지를 실시간으로 AI 처리하여 자동으로 분류할 수 있게 되어, 신고자가 생활안전 관련 사항을 보다 편리하게 신고할 수 있게 되었다. 결론: 본 논문 에서 제시하는 AI 이미지 자동분류 시스템은 90% 이상의 분류 정확도로 신고 이미지를 실시간으로 자동 분류하여 신고자가 간편하게 생활안전 관련 이미지를 신고할 수 있게 되었으며 향후 생활안전 예방서비 스 앱의 사용자의 증가에 따라 더욱 빠르고 정확한 AI 모델 개발 및 시스템 처리용량 향상이 필요하다.
목차
요약
서론
생활안전 신고 이미지 자동분류 AI CNN 알고리즘
이미지 자동분류 학습을 위한 데이터 세트
이미지 자동분류 학습을 위한 CNN 구조 설계
AI 모델을 사용한 신고 이미지 자동분류
생활안전 신고 이미지 자동분류 시스템
생활안전 신고 이미지 자동 분류 시스템 구조
실험방법
실험결과
결론
Acknowledgement
References
