원문정보
Verification of Ground Subsidence Risk Map Based on Underground Cavity Data Using DNN Technique
초록
영어
Purpose: In this study, the cavity data found through ground cavity exploration was combined with underground facilities to derive a correlation, and the ground subsidence prediction map was verified based on the AI algorithm. Method: The study was conducted in three stages. The stage of data investigation and big data collection related to risk assessment. Data pre-processing steps for AI analysis. And it is the step of verifying the ground subsidence risk prediction map using the AI algorithm. Result: By analyzing the ground subsidence risk prediction map prepared, it was possible to confirm the distribution of risk grades in three stages of emergency, priority, and general for Busanjin-gu and Saha-gu. In addition, by arranging the predicted ground subsidence risk ratings for each section of the road route, it was confirmed that 3 out of 61 sections in Busanjin-gu and 7 out of 68 sections in Sahagu included roads with emergency ratings. Conclusion: Based on the verified ground subsidence risk prediction map, it is possible to provide citizens with a safe road environment by setting the exploration section according to the risk level and conducting investigation.
한국어
연구목적: 본 연구에서는 지반공동탐사로 발견된 공동자료를 지하시설물과의 원인별 상관관계로 분석 하고, AI 알고리즘 기반으로 지반침하 예측지도를 검증하여 시민에게 안전한 도로 환경을 제공하고자 한다. 연구방법: 위험도 평가 관련 데이터조사와 빅데이터 수집, AI분석을 위한 데이터 전처리, 그리고 AI 알고리즘을 이용하여 지반침하 위험도 예측지도 검증 등 3가지 단계로 연구를 수행하였다. 연구결과: 작성한 지반침하 위험 예측지도를 분석하여 부산시 부산진구와 사하구에 대해 긴급, 우선, 일반 3단계의 공동관리 위험등급 분포를 확인 할 수 있었다. 또한, 지반침하 위험 등급 예측 값을 도로노선의 구간별로 정리하여 긴급 등급이 포함된 도로가 부산진구는 총 61개구간 중 3개소, 사하구는 총 68개구간 중 7개소 임을 확인하였으며 각 도로노선별 지반침하 위험 예측 순위를 파악하였다. 결론: 도출된 지반침하 위험 예측지도를 바탕으로 효율적으로 탐사구간을 설정하여 우선 조사, 선제 조치함으로써 시민들의 불안을 해소하고 효율적인 도로유지관리 및 보수, 제도의 개선 등의 부수적인 효과를 얻을 수 있다.
목차
요약
서론
데이터 전처리 및 심층 신경망 이론
데이터 전처리
심층 신경망
데이터 전처리 결과
딥러닝 학습 결과
결론
References
