원문정보
Algorithm Based on Cardinality Number of Exact Cover Problem
초록
영어
To the exact cover problem that remains NP-complete to which no polynomial time algorithm is made available, this paper proposes a linear time algorithm that yields an optimal solution. The proposed algorithm makes use of the set cover problem's major feature which states that "no identical element shall be included in more than one covering set". To satisfy this criterion, the proposed algorithm initially selects a subset with the minimum cardinality and deletes those that contain the cardinality identical to that of the selected subset. This process is repeatedly performed on remaining subsets until the final solution is obtained. Provided that the solution is unattainable, it selects subsets with the maximum cardinality and repeats the same process. The proposed algorithm has not only obtained the optimal solution with ease but also proved its wide applicability on N-queens problems, hence disproving the NP-completeness of the exact cover problem.
한국어
본 논문은 지금까지 NP-완전 문제로 다항시간 알고리즘이 존재하지 않는 완전피복 문제에 대해 선형시간으로 해를 구할 수 있는 알고리즘을 제안하였다. 제안된 알고리즘은 "행과 열에는 동일한 값이 존재하면 안된다"는 완전피복문 제의 특징을 이용하였다. 이를 위해 먼저 최소 원소 개수를 가진 부분집합을 선택하고 선택된 부분집합의 원소를 가진 부분집합을 삭제하였다. 남은 부분집합들을 대상으로 반복적으로 수행하면 해를 구한다. 만약, 해를 구하지 못하면 최대 원소 개수를 가진 부분집합을 선택하여 동일한 과정을 수행하였다. 제안된 알고리즘은 일반적인 완전피복 문제의 해를 쉽게 구하였다. 추가로, 완전피복 문제를 보다 일반화한 N-퀸 문제를 대상으로 제안된 알고리즘을 적용할 수 있음을 보였다. 결국, 제안된 완전피복 알고리즘은 완전피복 문제에 대해 P-문제임을 증명하였다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 관련연구와 문제점
Ⅲ. 원소수 기반 완전 피복 알고리즘
Ⅳ. 알고리즘 적용 및 결과 분석
Ⅴ. 결론 및 향후 연구과제
References
