원문정보
A Study on Preprocessing Techniques of Data in WiFi Fingerprint
초록
영어
The WiFi fingerprint method for location estimation within the home has the advantage of using the existing infrastructure and estimating absolute coordinates, so many studies are being conducted. Existing studies have mainly focused on the study of localization algorithms, but the improvement of accuracy has reached its limits. However, since a wireless LAN receiver such as a smartphone cannot measure signals smaller than the reception sensitivity of radio signals, the position estimation error varies depending on the method of processing these values. In this paper, we proposed a method to increase the location estimation accuracy by pre-processing the received signal data of the measured wireless LAN router in various ways and applying it to the existing algorithm, and greatly improved accuracy was obtained. In addition, the preprocessed data was applied to the KNN method and the CNN method and the performance was compared.
한국어
실내에서의 위치 추정을 위한 WiFi fingerprint 방식은 기존의 인프라를 이용하며 절대 좌표를 추정하는 장점이 있어 많은 연구가 진행되고 있다. 기존의 연구에서는 주로 위치 추정 알고리즘에 대한 연구에 집중되었지만 정확도를 개선하는 것이 한계에 도달했다. 그러나 스마트폰과 같은 무선랜 수신기에서 전파의 수신 감도보다 작은 신호는 측정이 불가하므로 이 값들을 처리하는 방법에 따라서 위치 추정 오차가 달라진다. 본 논문에서는 측정된 무선랜 공유기의 수신 신호 데이터를 다양한 방식으로 사전 처리하여 기존의 알고리즘에 적용함으로써 위치 추정 정확도를 높이는 방법을 제안 하였고, 크게 향상된 정확도를 얻을 수 있었다. 또한 사전 처리된 데이터를 KNN 방식과 CNN 방식에 적용하여 그 성능을 비교하였다.
목차
Abstract
Ⅰ. 서론
Ⅱ. WiFi 데이터의 사전 처리
1. WiFi fingerprint 데이터의 측정
2. WiFi 데이터의 사전 처리 방법
Ⅲ. KNN에 적용 결과
1. KNN 알고리즘
2. 실험 결과
Ⅳ. CNN에 적용 결과
1. CNN 모델
2. 실험 결과
Ⅴ. 결론
References
