원문정보
Text Mining Analysis of Customer Reviews on Public Service Robots : With a focus on the Guide Robot Cases
초록
영어
The use of service robots, particularly guide robots, is becoming increasingly prevalent in public institutions. However, there has been limited research into the interactions between users and guide robots. To explore the customer experience with the guidance robot, we selected 'QI', which has been meeting customers for the longest time, and collected all reviews since the service was launched in public institutions. By using text mining techniques, we identified the main keywords and user experience factors and examined factors that hinder user experience. As a result, the guide robot's functionality, appearance, interaction methods, and role as a cultural commentator and helper were key factors that influenced the user experience. After identifying hindrance factors, we suggested solutions such as improved interaction design, multimodal interface service design, and content development. This study contributes to the understanding of user experience with guide robots and provides practical suggestions for improvement.
한국어
공공기관에서 서비스 로봇, 특히 안내로봇의 사용이 보편화 되며 다양한 곳에서 사람들을 만나고 있다. 그러나 4년이 넘는 시간 동안 사용자가 안내로봇을 만나왔지만, 아직까지 사용자와 안내로봇의 상호작용에 대한 탐구가 부족 한 실정이다. 이에 이 연구는 안내로봇에 대한 사용자 경험을 탐구하고자, 가장 오랜 기간 동안 사용자를 만난 안내 로봇인 ‘큐아이’를 연구 대상으로 선정하여 서비스를 시작한 시점부터 작성된 모든 리뷰를 수집하였다, TF-IDF로 주 요 키워드를 확인하고 토픽 모델링을 통해 사용자 경험 요인을 도출하였으며 감성 분석을 통해 사용자 경험 저해 요 인을 살펴보았다. 분석 결과, 안내로봇의 기능, 외형, 상호작용 방식, 그리고 안내로봇의 문화해설사 역할과 도우미 역 할이 핵심 사용자 경험 요인으로 나타났다. 부정적 리뷰를 통해 확인한 저해 요인은 이를 개선할 수 있도록 인터랙션 설계와 멀티모달 인터페이스를 활용한 서비스 디자인, 문화해설사로서의 콘텐츠 개발 등 향후 방향성을 제안하였다. 이 연구는 안내로봇의 사용자 경험을 분석하고 개선방안을 제시한 것에 의의가 있다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
1. 안내로봇의 정의와 특성
2. 인간-로봇 상호작용과 물리적 이동성
3. 텍스트 마이닝을 이용한 사용자 리뷰 분석
4. 연구목적
Ⅲ. 연구 방법
1. 데이터 수집
2. 데이터 전처리
3. 데이터 분석
Ⅳ. 연구 결과
1. TF-IDF
2. LDA 토픽 모델링
3. 감성 분석
Ⅴ. 결론 및 논의
References