원문정보
초록
영어
The number of traffic accidents caused by wet or icy road surface conditions is on the rise every year. Car crashes in such bad road conditions can increase fatalities and serious injuries. Historical data (from the year 2016 to the year 2020) on weather-related traffic accidents show that the fatality rates are fairly high in Korea. This requires accurate prediction and identification of hazardous road conditions. In this study, a forecasting model is developed to predict the chances of traffic accidents that can occur on roads affected by weather and road surface conditions. Multiple deep learning algorithms taking into account AlexNet and 2D-CNN are employed. Data on orthophoto images, automatic weather systems, automated synoptic observing systems, and road surfaces are used for training and testing purposes. The orthophotos images are pre-processed before using them as input data for the modeling process. The procedure involves image segmentation techniques as well as the Z-Curve index. Results indicate that there is an acceptable performance of prediction such as 65% for dry, 46% for moist, and 33% for wet road conditions. The overall accuracy of the model is 53%. The findings of the study may contribute to developing comprehensive measures for enhancing road safety.
목차
1. Introduction
2. Literature Review
3. Data Collection and Processing
3.1 Data Collection
3.2 Data Processing
4. Model Development
4.1 Weather Classifier
4.2 Spatial Classifier
4.3 Road Classifier
5. Results
6. Conclusions
Acknowledgment
References
