원문정보
초록
영어
As the Internet and web technology develop around mobile devices, image data contains various types of sensitive information such as people, text, and space. In addition to these characteristics, as the use of SNS increases, the amount of damage caused by exposure and abuse of personal information online is increasing. However, research on de-identification technology based on multi-type object detection for personal information protection is insufficient. Therefore, this paper proposes an artificial intelligence model that detects and de-identifies multiple types of objects using existing single-type object detection models in parallel. Through cutmix, an image in which person and text objects exist together are created and composed of training data, and detection and de-identification of objects with different characteristics of person and text was performed. The proposed model achieves a precision of 0.724 and mAP@.5 of 0.745 when two objects are present at the same time. In addition, after de-identification, mAP@.5 was 0.224 for all objects, showing a decrease of 0.4 or more.
한국어
인터넷과 웹 기술이 모바일 장치 중심으로 발전하면서 이미지 데이터는 사람, 텍스트, 공간 등 다양한 유형의 민감 정보를 담고 있다. 이러한 특성과 더불어 SNS 사용이 증가하면서 온라인 상의 개인정보가 노출되고 악용되는 피해 규 모가 커지고 있다. 그러나 개인정보보호를 위한 다중 유형 객체 탐지 기반의 비식별화 기술에 관한 연구는 미흡한 상황 이다. 이에 본 논문은 기존의 단일 유형 객체 탐지 모델을 병렬적으로 이용하여 다중 유형의 객체를 탐지 및 비식별화 하는 인공지능 모델을 제안한다. Cutmix 기법을 통해 사람과 텍스트 객체가 함께 존재하는 이미지를 생성하여 학습 데이터로 구성하고, 사람과 텍스트라는 다른 특징을 가진 객체에 대한 탐지 및 비식별화를 수행하였다. 제안하는 모델은 두 가지 객체가 동시에 존재할 때 0.724의 precision과 0.745의 mAP@.5 를 달성한다. 또한, 비식별화 수행 후 전체 객체 에 대해 mAP@.5 가 0.224로, 0.4 이상의 감소폭을 보였다.
목차
ABSTRACT
1. 서론
2. 배경기술 및 관련연구
2.1. 이미지 객체 탐지
2.2. 텍스트 객체 처리
2.3. 이미지 병합
2.4. 비식별화
3. 다중 객체 탐지 및 비식별화 모델
3.1. 객체 탐지 모델
3.2. 비식별화 모델
3.3. 데이터 셋
4. 실험 결과
5. 결론
참고문헌