earticle

논문검색

Research on Determine Buying and Selling Timing of US Stocks Based on Fear & Greed Index

원문정보

Fear & Greed Index 기반 미국 주식 단기 매수와 매도 결정 시점 연구

Sunghyuck Hong

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Determining the timing of buying and selling in stock investment is one of the most important factors to increase the return on stock investment. Buying low and selling high makes a profit, but buying high and selling low makes a loss. The price is determined by the quantity of buying and selling, which determines the price of a stock, and buying and selling is also related to corporate performance and economic indicators. The fear and greed index provided by CNN uses seven factors, and by assigning weights to each element, the weighted average defined as greed and fear is calculated on a scale between 0 and 100 and published every day. When the index is close to 0, the stock market sentiment is fearful, and when the index is close to 100, it is greedy. Therefore, we analyze the trading criteria that generate the maximum return when buying and selling the US S&P 500 index according to CNN fear and greed index, suggesting the optimal buying and selling timing to suggest a way to increase the return on stock investment.

한국어

주식 투자에서 매수와 매도의 타이밍을 결정하는 것은 주식 투자의 수익률 올리기 위해 가장 중요한 요인 중에 하나 이다. 주식은 싸게 사서 비싸게 팔면 이익이 되지만, 비싸게 사서 싸게 팔면 손해가 된다. 주식의 가격을 결정하는 매수와 매 도의 물량에 의해 가격이 결정이 되고, 매수와 매도는 기업실적, 경제지표와도 관련이 있다. CNN에서 제공하는 공포와 탐욕 지수는 7가지 요소를 사용하고, 각 요소에 가중치를 부여하여 탐욕과 두려움으로 정의한 가중치 평균을 0~100 사이의 척도 로 계산하여 매일 발표하고 있다. 지수가 0에 가까우면 주식시장 심리가 두려운것이고, 100에 가까우면 탐욕스러운 것이다. 따라서 미국 S&P 500 지수를 CNN 공포와 탐욕지수에 따른 매수와 매도를 할 경우 최대 수익률이 발생하는 매매 기준을 분 석하여 최적의 매수와 매도 타이밍을 제시하여 주식투자에 수익률을 높일 수 있는 방안을 제시하고자 한다.

목차

Abstract
요약ㅤ
1. Introduction
2. Fear & Greedy Index vs. S&P 500
2.1 Market Momentum
2.2 Market Volatility
2.3 Stock price breadth
2.4 Put & Call Options
2.5 Stock Price Strength
2.6 Safe Haven Demand
2.7 Junk bond demand
3. Experimental Analysis and Results
3.1 Theoretical background
4. Simulation & Discussion
5. Conclusion
REFERENCES

저자정보

  • Sunghyuck Hong 홍성혁. Professor, Division of Advanced IT, IoT major, Baekseok University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.