원문정보
초록
영어
Q. mongolica and Q. dentata are representative species of deciduous forest communities in Korea and are known to be relatively resistant to soil drying condition among Korean oaks. This study attempted to elucidate the degree of competition and ecological niche characteristics of the two species by comparing the ecological responses of the two species according to soil moisture. Competition between Q. mongolica and Q. dentata was shown to be more intense under the conditions where moisture content was low than under the conditions where moisture content was high. As for the ecological niche overlaps of the two species for soil moisture, the structural traits of plant such as stem diameter overlapped the most, the traits of biomass such as petiole weight overlapped the least, and photosynthetic organ-related traits such as leaf width and length overlapped intermediately. When looking at the competition for soil moisture between the two species, it can be seen that Q. mongolica won in nine traits (leaf width length, leaf lamina length, leaf lamina weight, leaf petiole weight, leaf area, leaves weight, shoot weight, root weight, and plant weight) and Q. dentata won in the remaining seven traits (leaf petiole length, leaves number, stem length, stem diameter, stem weight, shoot length, and root length). Competition between the two species for the moisture environment of the soil was shown to be intense under the conditions where moisture content was low. The degree of competition between Q. dentata and Q. mongolica for soil moisture is high under the conditions where soil moisture content is low, and it is judged that Q. mongolica is more competitive for soil moisture than Q. dentata.
목차
Introduction
Materials and Methods
Gradient of environmental factors
Seed selection and sowing
Measurement of growth response
Results
Comparison of ecological niche breadths by tree species according to trait
Comparison of ecological niche overlaps for soil moisture between the two species
Comparison of the degree of competition for soil moisture between the two species
Analysis of the correlations between soil moisture gradient and traits
Discussion
Acknowledgements
References