earticle

논문검색

모바일 환경에서 지하공간객체의 경량화를 위한 단순화 방법

원문정보

Simplification Method for Lightweighting of Underground Geospatial Objects in a Mobile Environment

김종훈, 김용태, 고훈준

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Underground Geospatial Information Map Management System(UGIMMS) integrates various underground facilities in the underground space into 3D mesh data, and supports to check the 3D image and location of the underground facilities in the mobile app. However, there is a problem that it takes a long time to run in the app because various underground facilities can exist in some areas executed by the app and can be seen layer by layer. In this paper, we propose a deep learning-based K-means vertex clustering algorithm as a method to reduce the execution time in the app by reducing the size of the data by reducing the number of vertices in the 3D mesh data within the range that does not cause a problem in visibility. First, our proposed method obtains refined vertex feature information through a deep learning encoder-decoder based model. And second, the method was simplified by grouping similar vertices through K-means vertex clustering using feature information. As a result of the experiment, when the vertices of various underground facilities were reduced by 30% with the proposed method, the 3D image model was slightly deformed, but there was no missing part, so there was no problem in checking it in the app.

한국어

지하공간정보지도 관리 시스템은 지하공간의 다양한 지하시설물을 3D 메쉬 데이터로 통합하고, 모바일 환경에서 지 하시설물의 3D 이미지와 위치를 확인할 수 있도록 지원한다. 그러나 모바일 환경에서 실행되는 일정 지역 안에는 다양한 지 하시설물이 존재할 수 있고 층층히 겹쳐 보일 수 있어서 모바일 환경에서 실행하는데 시간이 오래 걸리는 문제가 있다. 본 논 문에서는 가시성에서 문제가 되지 않는 범위 내에서 3D 메쉬 데이터의 정점의 개수를 줄여서 데이터의 크기를 줄임으로써 모 바일 환경에서 실행 시간을 줄일 수 있는 방법으로 딥러닝 기반 K-means 정점 클러스터링 알고리즘을 제안한다. 첫번째로 우리가 제안하는 방법은 딥러닝 Encoder-Decoder 기반의 모델을 통하여 정재된 정점의 특징 정보를 얻고, 두번째로 특징 정보를 K-means 정점 클러스터링을 통하여 서로 비슷한 정점끼리 묶어서 단순화를 하였다. 실험결과 제안한 방법으로 다양 한 지하시설물들의 정점을 30%까지 줄였을 때, 이미지 모형이 약간의 변형은 발생하였지만 사라지는 부분은 없어서 모바일 환경에서 확인하는데 문제가 없었다.

목차

요약
Abstract
1. 서론
2. 관련연구
2.1 타일지도
2.2 메쉬 데이터의 정점 분석
2.3 메쉬 단순화 알고리즘
3. 딥러닝 기반 K-means 정점 클러스터링
3.1 인코더-디코더
3.2 K-means 정점 클러스터링
4. 실험 결과
5. 결론
REFERENCES

저자정보

  • 김종훈 Jong-Hoon Kim. (주)디비엔텍 개발본부
  • 김용태 Yong-Tae Kim. (주)디비엔텍 개발본부
  • 고훈준 Hoon-Joon Kouh. 경인여자대학교 교수

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.