원문정보
An Analysis of Educational Capacity Prediction according to Pre-survey of Satisfaction using Random Forest
초록
영어
Universities are looking for various methods to enhance educational competence level suitable for the rapidly changing social environment. This study suggests a method to promote academic and educational achievements by reducing drop-out rate from their majors through implementation of pre-survey of satisfaction that revised and complemented survey items. To supplement the CQI method implemented after a general satisfaction survey, a pre-survey of satisfaction was carried out. To consolidate students’ competences, this study made prediction and analysis of data with more importance possible using the Random Forest of the machine learning technique that can be applied to AI Medici platform, whose design is underway. By pre-processing the pre-survey of satisfaction, the students information enrolled in classes were defined as an explanatory variable, and they were classified, and a model was created and learning was conducted. For the experimental environment, the algorithms and sklearn library related in Jupyter notebook 3.7.7, Python 3.7 were used together. This study carried out a comparative analysis of change in educational satisfaction survey, carried out after classes, and trends in the drop-out students by reflecting the results of the suggested method in the classes.
한국어
대학들은 급변하는 사회 환경에 적합한 교육역량 수준을 높이기 위해 다양한 방법들을 찾고 있다. 본 논문에서 는 조사 항목을 수정, 보완한 만족도 사전조사를 개강 전에 실행하여 학업성취도를 높이고 전공 이탈자의 비율을 낮 춰 교육 성과를 높이는 방안을 제안한다. 일반적인 만족도 조사 이후에 시행되는 교육품질 개선(CQI) 방식을 보완하 고자 만족도 사전조사를 시행하였다. 학생역량을 강화하기 위해 설계가 진행 중인 인공지능형 메디치 플랫폼에 적용 할 수 있는 머신러닝 기법의 랜덤 포레스트를 활용하여 중요한 데이터의 예측 및 분석을 가능하게 하였다. 만족도 사 전조사 데이터들을 전처리하여 수강 신청 학생들의 정보를 설명 변수로 정의하고 분류하여 모델 생성 및 학습하였다. 실험 환경은 주피터 노트북 3.7.7, Python 3.7에서 관련 알고리즘과 사이킷런(sklearn) 라이브러리를 함께 사용하였 다. 제안하는 방안의 결과를 수업에 반영하여 수업 후에 진행하는 교육 만족도 조사의 변화와 중도 탈락생 수의 동향 을 비교 분석하였다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 관련 선행 연구
Ⅲ. 연구 방법
Ⅳ. 연구 결과
Ⅴ. 결론
References
