earticle

논문검색

연구보문

합성곱 신경망 기반 STR 전기영동 이미지를 이용한 DNA 프로필 인식 및 예측

원문정보

Prediction of DNA Profiles Using STR Electrophoresis Images Based on Convolutional Neural Network

박현철, 안으리

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

The convolutional neural network (CNN) is a deep learning method to recognize images with high accuracy and low error rate. In this study, we performed classification of DNA profiles based on electropherogram images using the CNN. 1,800 DNA profiles images of three control DNAs (007, 2800M, 9947A) were used for CNN model as a dataset. A dataset was divided into the train and test data set, and 1,500 and 300 images were used, respectively. The CNN model used the LeNet-5 architecture, and an accuracy of model was estimated by k-fold cross validation. Both the training data set and test data set showed an accuracy of 1.0 and a loss rate of 0 with 50 epochs. All 300 images of test data set exactly matched the actual data, and the predict probability of match for each element showed 0.579.

목차

Abstract
Ⅰ. 서론
Ⅱ. 재료 및 방법
1. 샘플 데이터 셋 및 작업환경
2. 합성곱 신경망
3. 모델 검증
Ⅲ. 결과
Ⅳ. 고찰
Ⅴ. 사사
Ⅵ. 참고문헌

저자정보

  • 박현철 Hyun-Chul Park. 국립과학수사연구원 유전자과 감정관
  • 안으리 Eui-Ree Ahn. 대구과학수사연구소 유전자분석과 감정관

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.