earticle

논문검색

Fuel Consumption Prediction and Life Cycle History Management System Using Historical Data of Agricultural Machinery

원문정보

Jung Seung Lee, Soo Kyung Kim

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This study intends to link agricultural machine history data with related organizations or collect them through IoT sensors, receive input from agricultural machine users and managers, and analyze them through AI algorithms. Through this, the goal is to track and manage the history data throughout all stages of production, purchase, operation, and disposal of agricultural machinery. First, LSTM (Long Short-Term Memory) is used to estimate oil consumption and recommend maintenance from historical data of agricultural machines such as tractors and combines, and C-LSTM (Convolution Long Short-Term Memory) is used to diagnose and determine failures. Memory) to build a deep learning algorithm. Second, in order to collect historical data of agricultural machinery, IoT sensors including GPS module, gyro sensor, acceleration sensor, and temperature and humidity sensor are attached to agricultural machinery to automatically collect data. Third, event-type data such as agricultural machine production, purchase, and disposal are automatically collected from related organizations to design an interface that can integrate the entire life cycle history data and collect data through this.

목차

Abstract
1. Introduction
2. Related Research
2.1 Vibration Analysis of Machines
2.2 Domestic and International AI Technology Trends
2.3 Failure Prediction and Anomaly Detection
2.4 AIOps (Artificial Intelligent for IT Operations)
3. Research Methodology
3.1 Research Objectives
3.2 Duty-free Oil Misuse Detection Model Based on Vibration Data Extracted by 3-axis Gyro Sensor
3.3 Anomaly Detection Model for Agricultural Machinery Based on C-LSTM Neural Network
3.4 Auto Encoder Neural Network Based Anomaly Detection Model
3.5 Historical Data Collection Model
4. Experimental Results
4.1 Key Performance Indicators
4.2 Evaluation Method of Quantitative Targets
4.3 Evaluation Environment for Quantitative Target Items
5. Conclusions and Implications
References

저자정보

  • Jung Seung Lee Associate Professor, School of Business, Hoseo University
  • Soo Kyung Kim Professor, School of International Business Administration, Dankook University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,200원

      0개의 논문이 장바구니에 담겼습니다.