earticle

논문검색

신호처리

데이터 증강을 위한 순환 생성적 적대 신경망 기반의 아스팔트와 콘크리트 균열 영상 간의 변환 기법

원문정보

CycleGAN Based Translation Method between Asphalt and Concrete Crack Images for Data Augmentation

심승보

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

The safe use of a structure requires it to be maintained in an undamaged state. Thus, a typical factor that determines the safety of a structure is a crack in it. In addition, cracks are caused by various reasons, damage the structure in various ways, and exist in different shapes. Making matters worse, if these cracks are unattended, the risk of structural failure increases and proceeds to a catastrophe. Hence, recently, methods of checking structural damage using deep learning and computer vision technology have been introduced. These methods usually have the premise that there should be a large amount of training image data. However, the amount of training image data is always insufficient. Particularly, this insufficiency negatively affects the performance of deep learning crack detection algorithms. Hence, in this study, a method of augmenting crack image data based on the image translation technique was developed. In particular, this method obtained the crack image data for training a deep learning neural network model by transforming a specific case of a asphalt crack image into a concrete crack image or vice versa . Eventually, this method expected that a robust crack detection algorithm could be developed by increasing the diversity of its training data.

한국어

구조물을 안전하게 관리하기 위해서는 우선적으로 건전한 유지가 전제되어야 한다. 이 같은 구조물의 건전성을 결정하는 요인 중에서 가장 대표적인 예로는 균열을 들 수 있다. 여러 가지 원인에 의해 발생하는 균열은 다양한 종류와 형태로 구조물에 손상을 입힌다. 무엇보다 이러 한 균열이 방치될 경우 위험도가 증가하여 안전사고로 이어질 수 있다. 이러한 문제점을 경감 하기 위하여 최근 들어 딥러닝과 컴퓨터 비전 기술을 활용하여 손상을 점검하는 방법들이 소 개되고 있다. 이 같은 방법들은 대체로 충분한 양의 학습 데이터가 필요한 것이 사실이다. 하지 만, 학습을 위한 영상 데이터의 충분한 확보가 어렵다는 점은 딥러닝 균열 탐지 알고리즘의 성능에 부정적인 영향을 미친다. 따라서 본 논문에서는 이에 대한 문제의식을 바탕으로 영상 변환 기법을 활용하여 균열 영상 데이터를 증강하는 방법을 제시했다. 이는 아스팔트 균열 영 상을 콘크리트 균열 영상으로 변환하거나 혹은 이와 반대로 콘크리트 균열 영상을 아스팔트 균열 영상으로 변환하여 딥러닝 신경망 모델을 학습하기 위한 영상 데이터를 확보하는 방법이 다. 이를 통해 학습 데이터의 다양성을 향상시켜 강건한 균열 탐지 알고리즘 개발에 기여할 수 있기를 기대한다.

목차

요약
ABSTRACT
Ⅰ. 서론
1. 딥러닝 학습을 위한 손상 영상의 필요성
2. 학습 데이터의 증강을 위한 딥러닝 기술 동향
Ⅱ. 균열 영상 데이터 변환 기법
1. 콘크리트와 아스팔트 균열 영상 데이터의 구성
2. 순환 생성적 적대 신경망을 활용한 영상 변환 기법
3. 학습 환경 구성
Ⅲ. 실험 결과 분석 및 논의
1. 변환 영상의 결과 분석
2. 합성 영상의 성능 평가
3. 영상 변환에 관한 논의
Ⅳ. Conclusion
REFERENCES

저자정보

  • 심승보 Seungbo Shim. 한국건설기술연구원 지반연구본부 수석연구원

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,300원

      0개의 논문이 장바구니에 담겼습니다.