원문정보
초록
영어
In this paper, the effect of porosity on the acoustic phase velocity of the 3D printed Kelvin closed-cell structure was investigated using the spectral phase analysis. Since Kelvin cells bring about the large amount of scattering, acoustic pulses in ultrasonic measurements undergoes a distortion of waveforms due to the dispersion effect. In order to take account on the dispersion, mathematical expressions for calculating the phase velocity of longitudinal waves propagating normal to the plane of the Kelvin structure are suggested by introducing a complex wave number based on Fourier transform. 3D Kelvin structure composed of identical unit-cells, a polyhedron of 14 faces with 6 quadrilateral and 8 hexagonal faces, was developed and fabricated by 3D CAD and 3D printer to represent the micro-structure of porous materials such as aluminum foam and cancellous bone. Total nine samples of 3D Kelvin structure with different porosity were made by changing the thickness of polyhedron. Ultrasonic pulse of 1MHz center frequency was applied to the Kelvin structures for the measurement of the phase velocity of ultrasound using the TOF(time-of-flight) and the phase spectral method. From the experimental results, it was found that the acoustic phase velocity decreased linearly with the porosity.
목차
1. INTRODUCTION
2. KELVIN MODEL FOR POROUS MATERIALS
3. FABRICATION OF CLOSED-CELL KELVIN STRUCTURE
4. MEASUREMENT OF ACOUSTIC WAVE VELOCITY IN KELVIN STRUCTURE
5. SPECTRAL ANALYSIS FOR THE CALCULATION OF PHASE VELOSITY
6. RESULTS AND DISCUSSIONS
7. CONCLUSIONS
ACKNOWLEDGEMENT
REFERENCES