원문정보
초록
영어
The purpose of this study is to investigate the effects of assessment by adopting adaptive learning in higher education that are rarely examined in previous studies. In particular, this study applied research questions: 1) How does technical perception, perceived contents and features, and perceived integration of the AI-based adaptive system with lecture affect overall satisfaction, overall effectiveness, overall usefulness, overall motivation for the study, and intention to use it with other classes? 2) How do overall satisfaction, overall effectiveness, overall usefulness, motivation for the class, and intention to use affect loyalty on the AI-based adaptive system? This study conducted online surveys after the completion of the classes adopted AI-based adaptive learning system, ALEKS. This study applied ANOVA, regression, and factor analyses. The results of this study found that perceived integration of the AI-based adaptive learning system with the lectures on overall satisfaction, effectiveness, motivation, and intention to use for other classes showed significant with higher effect size. The results of this study provides implication that the AI-based learning system help improve learning outcomes in graduate level studies. The results provide policy and managerial implications that the AI-based adaptive learning system should improve better customer relationships in higher education.
한국어
인공지능 기반 맞춤 및 적응형 학습을 대학원 이상의 수업에 적용에 따른 실증 연구는 매우 부족한 상황이다. 본 연구는, 인공지능 기반 맞춤 및 적응형 학습을 대학원 수업에 적용한 경우, 만족도 및 충성도를 연구 했으며, 테크놀로지관련 인식, 컨텐츠 및 시스템 특성에 대한 인식, 및 인공지능 기반 맞춤형 학습과 강의를 병행한 교육 에 대한 전반적인 인식이 만족도, 효과성, 유용성, 동기부여, 및 다른 수업에 적용에 따른 의사에 어떻게 영향을 주는 지 조사하였다. 인공지능 기반 맞춤 및 적응형 시스템인 알렉스를 적용한 강의 직후 온라인 설문조사를 통 한 데이터를 사용하였으며, 요인분석, 회귀분석, 분산분석 등을 활용하여 가설검증을 하였다. 본 연구의 결과로, 어떤 요인들이 유의하게 영향을 주는 지와 효과의 크기를 비교 검증하였고, 더불어 만족도가 충성도에 영향을 미치는 이론이 교육효과에도 적용됨을 입증하였다. 또한, 인공지능 기반 맞춤 및 적응형 시스템의 고등교육 특히 대학원 수업에도 효과가 있고, 고객관계관리에 도움이 된다는 시사점을 제시한다.
목차
Abstract
1. Introduction
2. Literature Review
2.1. AI-Based Personalized Adaptive Learning
2.2. Assessment Learning in Knowledge Space (ALEKS)
3. Theoretical Background
4. Hypothesis Development
5. Methodology
5.1. Adoption of ALEKS in Class
5.2. Online Survey Design
6. Data Analysis
7. Discussion
8. Conclusion
8.1. Managerial and Policy Implications
8.2. Future Study and Limitations
References
키워드
저자정보
참고문헌
- 1Acampora, G., Gaeta, M., & Loia, V. (2011). Combining Multi-agent Paradigm and Memetic Computing for Personalized and Adaptive Learning Experiences. Computational Intelligence Journal, 27(2), 141-165.
- 2Albert, D., & Lukas, J. (1999). Knowledge Spaces:Theories, Empirical Research, and Applications. London, UK: Psychology Press, Routledge Taylor & Francis Group. Bulletin of the Graduate School of Education, Hiroshima University, 1(50), 25-34. Hiroshima, Japan.
- 3Albert, D., Schrepp, M., & Held, T. (1994). Construction of knowledge spaces for problem solving in chess. In G. H. Fischer, & D. Laming (Eds.), Contributions to mathematical psychology, psychometrics, and methodology (pp. 123-135). Recent Research in Psychology. New York, USA:Springer New York.
- 4Albert, D., & Mori, T. (2001). Contributions of Cognitive Psychology to the Future of E-Learning. Bulletin of the Graduate School of Education, Hiroshima University, 1(50), Learning and Curriculum Development, 25-34.
- 5Cho, Y. (2021). Investigating Factors of Higher Education on Job Satisfaction, Globalization, and Hosting Country. Journal of Industrial Distribution & Business, 12(2), 7-17.
- 6Doignon, J. P., & Falmagne, J.C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23, 175–196.
- 7Doignon, J. P. & Falmagne, J. C. (1999). Knowledge Spaces. Berlin, Heidelberg, New York:Springer-Verlag.
- 8Doignon, J. P., & Falmagne, J. C. (2016). Knowledge spaces and learning spaces. In W. H. Batchelder, H. Colonius, & E. N. Dzhafarov (Eds.), New Handbook of Mathematical Psychology (pp.274-321), Cambridge, UK: Cambridge University Press.
- 9Elliott, A. J., & Dweck, C. S. (2005) Handbook of Competence and Motivation. New York, NY: The Guilford Press.
- 10El-Sabagh & Hamed, E. (2020). The Relationship between Learning-Styles and Learning Motivation of Students at Umm Al-Qura University. Journal of Egyptian Association for Educational Computer, 8(1), 1-28.