원문정보
Exploring Issues Related to the Metaverse from the Educational Perspective Using Text Mining Techniques - Focusing on News Big Data
초록
영어
The purpose of this study is to analyze the metaverse-related issues in the news big data from an educational perspective, explore their characteristics, and provide implications for the educational applicability of the metaverse and future education. To this end, 41,366 cases of metaverse-related data searched on portal sites were collected, and weight values of all extracted keywords were calculated and ranked using TF-IDF, a representative term weight model, and then word cloud visualization analysis was performed. In addition, major topics were analyzed using topic modeling(LDA), a sophisticated probability-based text mining technique. As a result of the study, topics such as platform industry, future talent, and extension in technology were derived as core issues of the metaverse from an educational perspective. In addition, as a result of performing secondary data analysis under three key themes of technology, job, and education, it was found that metaverse has issues related to education platform innovation, future job innovation, and future competency innovation in future education. This study is meaningful in that it analyzes a vast amount of news big data in stages to draw issues from an education perspective and provide implications for future education.
한국어
본 연구는 뉴스 빅데이터에 나타난 메타버스 관련 이슈들을 교육관점에서 분석하여 그 특징을 탐색하고, 메타버 스의 교육적 활용가능성 및 미래교육에 대한 시사점을 제공하는데 목적이 있다. 이를 위해 포털사이트에서 검색되는 메타버스 관련 뉴스 데이터를 41,366건 수집하였고, 대표적인 용어 가중치 모델인 TF-IDF를 이용하여 추출된 모든 키워드의 가중치 값을 계산하여 순위화한 후, 워드클라우드로 시각화 분석을 수행하였다. 또한 정교한 확률기반 텍스트 마이닝 기법인 토픽모델링(LDA)을 활용하여 주요 토픽들을 분석하였다. 연구결과 교육관점에서 메타버스의 핵심 이슈 로는 플랫폼 산업, 미래인재, 기술의 확산 등과 같은 주제가 도출되었다. 또한, 기술, 직업, 교육이라는 세 개의 핵심 주제로 2차 데이터 분석을 실시한 결과 미래교육에서 메타버스는 교육플랫폼의 혁신, 미래 직업의 혁신, 미래 역량의 혁신과 관련한 이슈를 갖는 것으로 나타났다. 본 연구는 방대한 양의 뉴스 빅데이터를 단계적으로 분석하여 교육관점에 서 이슈를 도출하고 미래교육에 대한 시사점을 제공하였다는 데 의의가 있다.
목차
Abstract
1. 서론
2. 선행연구
2.1 메타버스의 개념과 특징
2.2 메타버스의 교육적 활용 사례
3. 연구방법
3.1 데이터 수집
3.2 비정형 텍스트 데이터 전처리
3.3 내용 분석을 위한 텍스트 마이닝 기법
4. 연구결과
4.1 LDA를 통한 메타버스 핵심 이슈 도출
4.2 워드클라우드를 통한 메타버스 핵심 이슈별 분석
4.3 LDA를 통한 메타버스 핵심 이슈별 분석
5. 결론
REFERENCES