earticle

논문검색

ITS평가

BIS(Bus Information System) 정확도 향상을 위한 머신러닝 적용 방안 연구

원문정보

A Study on the Application of Machine Learning to Improve BIS (Bus Information System) Accuracy

장준용, 박준태

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Bus Information System (BIS) services are expanding nationwide to small and medium-sized cities, including large cities, and user satisfaction is continuously improving. In addition, technology development related to improving reliability of bus arrival time and improvement research to minimize errors continue, and above all, the importance of information accuracy is emerging. In this study, accuracy performance was evaluated using LSTM, a machine learning method, and compared with existing methodologies such as Kalman filter and neural network. As a result of analyzing the standard error for the actual travel time and predicted values, it was analyzed that the LSTM machine learning method has about 1% higher accuracy and the standard error is about 10 seconds lower than the existing algorithm. On the other hand, 109 out of 162 sections (67.3%) were analyzed to be excellent, indicating that the LSTM method was not entirely excellent. It is judged that further improved accuracy prediction will be possible when algorithms are fused through section characteristic analysis.

한국어

BIS(Bus Information System) 서비스는 대도시를 포함하여 중소도시까지 전국적으로 확대운 영되는 추세이며, 이용자의 만족도는 지속적으로 향상되고 있다. 이와 함께 버스도착시간 신뢰 성 향상 관련 기술개발, 오차 최소화를 위한 개선 연구가 지속되고 있으며 무엇보다 정보 정확 도의 중요성이 부각되고 있다. 본 연구에서는 기계학습 방법인 LSTM을 이용하여 정확도 성능 을 평가하였으며 기존 칼만필터, 뉴럴 네트워크 등 방법론과 비교하였다. 실제 여행시간과 예 측값에 대해 표준오차를 분석한 결과 LSTM 기계학습 방법이 기존 알고리즘에 비해 정확도는 약 1% 높고, 표준오차는 약 10초 낮은 것으로 분석되었다. 반면 총 162개 구간 중 109개 구간 (67.3%) 우수한 것으로 분석되어 LSTM 방법이 전적으로 우수한 것은 아닌 것으로 나타났다. 구간 특성 분석을 통한 알고리즘 융합시 더욱 향상된 정확도 예측이 가능할 것으로 판단된다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 선행연구 고찰
Ⅲ. 연구 방법론
1. 기계학습 적용 및 데이터 연관 관계
2. LSTM 머신러닝 모델 구축 및 성능 측정
Ⅳ. 기계학습 적용 분석 결과
1. 데이터 연관 관계 분석
2. 모델별 정확도 및 표준오차 성능
3. LSTM 모델 적용 특성
Ⅴ. 결론
REFERENCES

저자정보

  • 장준용 Jun yong Jang. 세종시청 대중교통과 주무관
  • 박준태 Jun tae Park. 한국교통대학교 교통시스템공학과 연구교수

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,200원

      0개의 논문이 장바구니에 담겼습니다.