원문정보
초록
영어
There is a function that describing the severity of vehicle’s accident by (changes of speed in the center of gravity of vehicle, km/h), impact point of the collision vehicle, the impacted point, and EES(Energy Equivalent Speed, km/h) using depth of impacted vehicle and the energy loss of the vehicle. CNN(Convolutional Neural Networks) is mainly used in Deep-learning to process image or video data. Convolution is a Neural Network model before preprocessing task. In PC-Crash V 13.0 has a EES-CNN function using EES and CNN. When user inputs image file of damaged vehicle, EES-CNN shows predicted with a bar graph. To utilize this EES-CNN function in real accident-analysis, it has to be verified or needs improvements. In this study, after collecting images from NHTSA NASS-CDS in frontal collision condition, then verified if predicted data matches to Δυ data from NASS. Furthermore we analyzed property of pictures and presented a method of taking a picture for EES-CNN function to get higher accuracy.
목차
Ⅰ. 서론
Ⅱ. 이론적 배경
1. EES 와 Delta-V
2. PC-Crash 의 EES-CNN
Ⅲ. 실험 방법
1. NASS-CDS 데이터 수집
2. EES-CNN 모델 적용
Ⅳ. 결과 및 고찰
1. EES-CNN 결과 수행 결과 분석
2. 에러율 낮은 케이스의 사진 특성 분석
3. 에러율 높은 케이스의 사진 특성 분석
4. 파손위치 인식 불량 케이스의 사진 특성 분석
Ⅴ. 결론
Ⅵ. 참고문헌