원문정보
초록
영어
The purpose of this study is to suggest a plan to utilize atypical data in the health care field by inferring standard medical terms related to the musculoskeletal system through keyword network analysis of medical records of patients hospitalized for musculoskeletal disorders. The analysis target was 145 summaries of discharge with musculoskeletal disorders from 2015 to 2019, and was analyzed using TEXTOM, a big data analysis solution developed by The IMC. The 177 musculoskeletal related terms derived through the primary and secondary refining processes were finally analyzed. As a result of the study, the frequent term was 'Metastasis', the clinical findings were 'Metastasis', the symptoms were 'Weakness', the diagnosis was 'Hepatitis', the treatment was 'Remove', and the body structure was 'Spine' in the analysis results for each medical terminology system. 'Oxycodone' was used the most. Based on these results, we would like to suggest implications for the analysis, utilization, and management of unstructured medical data.
한국어
본 연구는 근골격계 질환으로 입원한 환자의 의무기록지 키워드 네트워크 분석을 통해 근골격계와 관련된 표준 의료용어를 유추하여 보건의료현장의 비정형화된 데이터 활용 방안을 제시하기 위함이다. 분석 대상은 2010년부터 2019년까지 근골격계 질환 환자의 입퇴원요약지 145부로, 더아이엠씨(The IMC)에서 개발한 빅데이터 분석 솔루션인 TEXTOM을 활용하여 분석하였다. 1차·2차 정제과정을 통해 도출된 177개의 근골격계 관련 용어를 최종 분석하였다. 연구결과 다빈도 용어는 ‘Metastasis’, 의료용어 체계별 분석 결과에서 임상소견은 ‘Metastasis’, 증상은 ‘Weakness’, 진단은 ‘Hepatitis’, 처치는 ‘Remove’, 신체구조는 ‘Spine’, 약물은 ‘Oxycodone’이 가장 많이 사용되었다. 이러한 결과를 바탕으로 정형화되지 않은 의료데이터의 분석과 활용 및 관리 방안에 대한 시사점을 제안하고자 한다.
목차
Abstract
1. INTRODUCTION
1.1 The necessity of research
1.2 Securing research ethics
2. SYSTEM MODEL AND METHODS
2.1 Research design
2.2 Data collection target
2.3 Analysis tool
2.4 Data processing
2.5 Data processing and analysis
3. RESULTS
3.1 Frequency analysis
3.2 Overall network analysis
3.3 Frequency analysis by medical terminology system
3.4 Subnetwork Analysis
4. DISCUSSION AND CONCLUSIONS
REFERENCES
