원문정보
초록
영어
This study investigates the effect of the semi-supervised learning(SSL) method on predicting default risk of peer-to-peer(P2P) loans. Despite its proven performance, the supervised learning(SL) method requires labeled data, which may require a lot of effort and resources to collect. With the rapid growth of P2P platforms, the number of loans issued annually that have no clear final resolution is continuously increasing leading to abundance in unlabeled data. The research data of P2P loans used in this study were collected on the LendingClub platform. This is why an SSL model is needed to predict the default risk by using not only information from labeled loans(fully paid or defaulted) but also information from unlabeled loans. The results showed that in terms of default risk prediction and despite the use of a small number of labeled data, the SSL method achieved a much better default risk prediction performance than the SL method trained using a much larger set of labeled data.
한국어
본 연구는 P2P(Peer-to-Peer) 대출의 부도위험 예측을 위하여 준지도학습(SSL) 기반의 모델을 개발하고자 한 다. 검증된 성능에도 불구하고 지도학습(SL) 방법은 완전 지불 또는 채무불이행과 같이 레이블이 결정된 다수의 데이터 가 필요한데 충분한 수의 레이블 데이터를 수집하려면 많은 자원과 시간이 필요하다. P2P 플랫폼이 급성장하면서 대출 건수도 매해 급증하였고, 레이블이 없는 데이터도 지속적으로 증가하고 있다. 본 연구는 P2P 대출 플랫폼인 LendingClub에서 수집한 데이터를 사용하였다. P2P 대출 중 레이블이 결정된 대출에서 추출한 정보뿐만 아니라 레이 블이 결정되지 않은 대출에서 추출한 정보도 사용하여 부도 위험을 예측하는 SSL 모델을 개발하여 연구를 수행한 결과, 적은 수의 레이블이 결정된 데이터를 사용함에도 불구하고 SSL 방법으로 구축된 모델이 많은 수의 레이블이 결정된 데이터를 사용하여 학습시킨 SL 방법으로 구축된 모델보다 부도 위험 예측성과가 향상되었다.
목차
Abstract
1. 서론
2. 이론적 배경
2.1 P2P 대출 채무불이행에 대한 연구
2.2 준지도학습(SSL)에 대한 연구
3. 연구방법
3.1 의사결정나무와 앙상블 분류기를 활용한 Self-training 알고리즘
3.2 데이터 설명
3.3 변수선정
4. 분석 결과
5. 결론
REFERENCES
