원문정보
A Study on the Prediction of Cabbage Price Using Ensemble Voting Techniques
초록
영어
Vegetables such as cabbage are greatly affected by natural disasters, so price fluctuations increase due to disasters such as heavy rain and disease, which affects the farm economy. Various efforts have been made to predict the price of agricultural products to solve this problem, but it is difficult to predict extreme price prediction fluctuations. In this study, cabbage prices were analyzed using the ensemble Voting technique, a method of determining the final prediction results through various classifiers by combining a single classifier. In addition, the results were compared with LSTM, a time series analysis method, and XGBoost and RandomForest, a boosting technique. Daily data was used for price data, and weather information and price index that affect cabbage prices were used. As a result of the study, the RMSE value showing the difference between the actual value and the predicted value is about 236. It is expected that this study can be used to select other time series analysis research models such as predicting agricultural product prices.
한국어
배추와 같은 채소류는 자연재해의 영향을 많이 받기 때문에 폭우나 병해와 같은 재해로 인해 가격 변동이 심해져 농가 경제에 영향을 미치게 된다. 이러한 문제를 해결하기 위해서 농산물 가격 예측을 위한 다양한 노력이 행해졌지만 극심한 가격 예측 변동을 예측하기는 어렵다. 본 연구에서는 단일 분류기를 결합하여 다양한 여러 개 의 분류기를 통해 최종 예측 결과를 결정하는 방식인 앙상블 Voting 기법으로 배추 가격을 분석하였다. 또한 시계 열 분석 방법인 LSTM과 부스팅 기법인 XGBoost와 RandomForest로 결과 비교를 하였다. 가격 데이터는 일별 데이터를 사용하였고 배추 가격에 영향을 주는 기상정보와 물가지수 등을 사용하였다. 연구 결과로는 실제값과 예측값의 차이를 보여주는 RMSE 값이 약 236 수준이다. 이 연구를 활용하여 농산물 가격 예측과 같은 다른 시계 열 분석 연구 모델 선정에 활용할 수 있을 것으로 기대된다.
목차
Abstract
1. 서론
2. 선행연구조사
3. 학습데이터 구축
3.1 데이터 수집
3.2 데이터 셋
3.3 데이터 전처리
4. 모델 설계
4.1 사용 모델
4.2 Voting 모델
5. 실험
5.1 실험 환경
6. 결과
6.1 전체 모델 비교
6.2 LSTM
6.3 RandomForest
6.4 XGBoost
6.5 Voting
6.6 모델별 가격 변동성 비교
6.7 전체 모델 비교
7. 결론
REFERENCES
