원문정보
초록
영어
In this article, we proposed to predict natural gas (NG) leakage levels through feature selection based on a factor analysis (FA) of the integrating the Korean Meteorological Agency data and natural gas leakage data for considering complex factors. The paper has been divided into three modules. First, we filled missing data based on the linear interpolation method on the integrated data set, and selected essential features using FA with OrdinalEncoder (OE)-based normalization. The dataset is labeled by K-means clustering. The final module uses four algorithms, K-nearest neighbors (KNN), decision tree (DT), random forest (RF), Naive Bayes (NB), to predict gas leakage levels. The proposed method is evaluated by the accuracy, area under the ROC curve (AUC), and mean standard error (MSE). The test results indicate that the OrdinalEncoder-Factor analysis (OE-F)-based classification method has improved successfully. Moreover, OE-F-based KNN (OE-F-KNN) showed the best performance by giving 95.20% accuracy, an AUC of 96.13%, and an MSE of 0.031.
한국어
본 논문에서는 다중 요인을 고려한 천연 가스 누출 정도 예측을 위해 관련 요인을 포함하는 기상청 자료와 천연가스 누출 자료를 통합하고, 요인 분석을 기반으로 중요 특성을 선택하는 머신러닝 기법을 제안한다. 제안된 기법은 3단계 절차로 구성되어 있다. 먼저, 통합 데이터 셋에 대해 선형 보간법을 수행하여 결측 데이터를 보완하는 전처리를 수행한다. 머신러닝 모델 학습 최적화를 위해 OrdinalEncoder(OE) 기반 정규화와 함께 요인 분석을 사용하여 필수 특징을 선택하며, 데이터 셋은 k-평균 클러스터링으로 레이블을 지정한다. 최종적으로 K-최근접 이웃, DT(Decision Tree), RF(Random Forest), NB(Naive Bayes)의 네 가지 알고리즘을 사용하여 가스 누출 수준을 예측한다. 제안된 방법은 정확도, AUC, 평균 표준 오차(MSE)로 평가되었으며, 테스트 결과 OE-F 전처리를 수행한 경우 기존 기법에 비해 성공적으로 개선되었음을 보였다. 또한 OE-F 기반 KNN(OE-F-KNN)은 95.20%의 정확도, 96.13%의 AUC, 0.031의 MSE로 비교 알고리즘 중 최고 성능을 보였다.
목차
요약
1. Introduction
2. Methodology
2.1 Linear Interpolation
2.2 Feature importance
2.3 Ordinal Encoder
2.4 Factor analysis
2.5 K-means Clustering
3. Evaluation Metrics
4. Experimental Study
5. Conclusion
REFERENCES