earticle

논문검색

기업부도 예측 앙상블 모형의 최적화

원문정보

The Optimization of Ensembles for Bankruptcy Prediction

김명종, 윤우섭

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

This paper proposes the GMOPTBoost algorithm to improve the performance of the AdaBoost algorithm for bankruptcy prediction in which class imbalance problem is inherent. AdaBoost algorithm has the advantage of providing a robust learning opportunity for misclassified samples. However, there is a limitation in addressing class imbalance problem because the concept of arithmetic mean accuracy is embedded in AdaBoost algorithm. GMOPTBoost can optimize the geometric mean accuracy and effectively solve the category imbalance problem by applying Gaussian gradient descent. The samples are constructed according to the following two phases. First, five class imbalance datasets are constructed to verify the effect of the class imbalance problem on the performance of the prediction model and the performance improvement effect of GMOPTBoost. Second, class balanced data are constituted through data sampling techniques to verify the performance improvement effect of GMOPTBoost. The main results of 30 times of cross-validation analyzes are as follows. First, the class imbalance problem degrades the performance of ensembles. Second, GMOPTBoost contributes to performance improvements of AdaBoost ensembles trained on imbalanced datasets. Third, Data sampling techniques have a positive impact on performance improvement. Finally, GMOPTBoost contributes to significant performance improvement of AdaBoost ensembles trained on balanced datasets.

한국어

본 연구에서는 범주 불균형 문제가 내재된 기업부도 예측 AdaBoost 앙상블 모형의 성과를 개선하기 위하여 GMOPTBoost 알고리즘을 제안한다. AdaBoost 알고리즘은 오분류 표본에 대하여 강건한 학습기회를 제공한다는 장점이 있지만, 산술평균 정확도에 기반하기 때문에 범주 불균형 문제를 효과적으로 해결하지 못한다는 한계점이 존재한다. GMOPTBoost는 가우시안 경사하강법(Gaussian gradient descent)을 적용하여 기하평균 정확도를 최적화하고 범주 불균형 문제를 효과적으로 해결할 수 있다는 장점이 있다. 본 연구에서는 첫째, 범주 불균형 문제가 예측 모형의 성과에 미치는 효과와 GMOPTBoost의 성과 개선 효과를 검증하기 위하여 5개의 범주 불균형 데이터를 구성하였으며, 둘째, 범주 균형 데이터에 대한 GMOPTBoost의 성과 개선 효과를 검증하기 위하여 데이터 샘플링 기법을 통하여 구성된 균형 데이터를 구성하였다. 30회의 교차타당성 분석의 주요 결과는 다음과 같다. 첫째, 범주 불균형 문제는 예측 성과에 부정적인 영향을 미친다. 둘째, GMOPTBoost는 불균형 데이터에 적용된 AdaBoost의 성과를 유의적으로 개선시키는 긍정적인 효과를 제공한다. 셋째, 데이터 샘플링 기법은 성과 개선에 긍정적인 영향을 미친다. 마지막으로 데이터 샘플링 기법을 적용한 범주 균형 데이터에서도 GMOPTBoost는 유의적인 성과 개선에 기여한다.

목차

요약
Ⅰ. 서론
Ⅱ. 범주 불균형 문제
2.1 기업 부실 예측의 범주 불균형 문제
2.2 범주 불균형의 성과 측정치 문제
Ⅲ. 학습 알고리즘
3.1 AdaBoost 알고리즘
3.2 GMOPTBoost 알고리즘
Ⅳ. 연구방법론
4.1 표본 수집
4.2 변수 선정
4.3 연구모형 설계
V. 연구 결과
5.1 범주 불균형 표본에 대한 성과 분석
5.2 범주 균형 표본에 대한 성과 분석
Ⅵ. 결론
참고문헌
Abstract

저자정보

  • 김명종 Myoung-Jong Kim. 부산대학교 경영대학 경영학과 교수
  • 윤우섭 Woo Seob Yun. 부산대학교 경영대학 경영학과 학사과정

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 5,400원

      0개의 논문이 장바구니에 담겼습니다.