원문정보
초록
영어
This paper presents a system that remotely monitors lone seniors at home and promptly alarms caregivers to recommend appropriate medical care services upon detecting abnormal behavior and critical conditions such as collapsing, excessive coughing, degradation of sleep quality, fever, and unusual indoor moving lines. Our system offers contactless monitoring techniques based on heterogeneous IoT sensors and deep learning to minimize the disruption to lone senior's daily life. In addition to the design and implementation of the sensor data collection and analysis system, we share our experience in installation, deployment, configuration, maintenance of the system through the case study conducted on the actual lone seniors living in Seoul Metropolitan. Based on our research, we recommend further development directions to prepare for the nationwide expansion of our system.
한국어
본 논문은 독거노인의 복합적 행태를 이종 사물인터넷 센서들과 딥러닝 기법을 활용하여 인지하고 낙상, 잦은 기침, 수면의 질 감소, 발열 및 비정상적 생활 동선의 발생 등 위급하거나 건강이 저하되는 상황을 적시에 보호자 및 의료복지 담당자에게 알리고 적정한 후속 서비스를 추천 및 수행할 수 있는 시스템을 논한다. 독거노인 들의 생활을 최대한 방해하지 않기 위하여 전면 비접촉식 상황 인식 기술을 선보인다. 본 논문은 센서 데이터의 수집 및 분석 체계의 설계와 구현 방법은 물론, 서울시 총 5개구 거주 독거노인들을 대상으로 실증한 경험을 통해 설치, 설정, 운영 및 유지 보수 측면에서의 다양한 문제점들을 서술하고 해당 시스템의 전국 확산에 대비한 향후 발전 방향을 제언한다.
목차
Abstract
1. 서론
2. 관련연구
3. 시스템 구성
3.1 이종 센싱부
3.2 관제 시스템
4. 시스템 운영 실증 경험 분석
6. 결론
REFERENCES