원문정보
Comparison of Activation Functions using Deep Reinforcement Learning for Autonomous Driving on Intersection
초록
영어
Autonomous driving allows cars to drive without people and is being studied very actively thanks to the recent development of artificial intelligence technology. Among artificial intelligence technologies, deep reinforcement learning is used most effectively. Deep reinforcement learning requires us to build a neural network using an appropriate activation function. So far, many activation functions have been suggested, but different performances have been shown depending on the field of application. This paper compares and evaluates the performance of which activation function is effective when using deep reinforcement learning to learn autonomous driving on highways. To this end, the performance metrics to be used in the evaluation were defined and the values of the metrics according to each activation function were compared in graphs. As a result, when Mish was used, the reward was higher on average than other activation functions, and the difference from the activation function with the lowest reward was 9.8%.
한국어
자율주행은 자동차가 사람 없이 운전할 수 있도록 해 주며 최근 인공지능 기술의 발전에 힘입어 매우 활발히 연구되고 있다. 인공지능 기술 중에서도 특히 심층 강화 학습이 가장 효과적으로 사용되는데 이를 위해서는 적절한 활성 화 함수를 이용한 신경망 구축이 필수적이다. 여태껏 많은 활성화 함수가 제시됐으나 적용 분야에 따라 서로 다른 성능 을 보여주었다. 본 논문은 교차로에서 자율주행을 학습하기 위해 심층 강화 학습을 사용할 때 어떤 활성화 함수를 사용 하는 것이 효과적인지 성능을 비교 평가한다. 이를 위해 평가에서 사용할 성능 메트릭을 정의하고 각 활성화 함수에 따른 메트릭의 값을 그래프로 비교하였다. 그 결과 Mish를 사용할 경우 보상이 다른 활성화 함수보다 평균적으로 높은 것을 알 수 있었고 보상이 가장 낮은 활성화 함수와의 차이는 9.8%였다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
1. Highway-env
2. 활성화 함수
Ⅲ. 성능 평가 방법
Ⅳ. 성능 평가
Ⅴ. 결론
References
