원문정보
A Study of the Standard Structure for the Social Disaster and Safety Incidents Data
초록
영어
Purpose: In this paper, we propose a common dataset structure which includes the incidents investigation information and features data for machine learning. Most of the data is from the incidents reports of the governmental part and restricts on the social disaster and safety areas. Method: Firstly, we extract basic incidents data from the several incident investigation reports. The data includes the cause, damage, date, classification of the incidents and additionally considers the feature data for the machine learning. All data is represented by XML standard notation. Result: We defined the standard XML schema and the example for the incidents investigation information. Conclusion: We defined the common incidents dataset structure for the machine learning. It may play roles of the common infrastructure for the disaster and safety applications areas
한국어
연구목적: 본 논문은 사회재난 및 안전사고 발생에 따른 재난 유형별 조사 분석 정보에 대한 공통 데이 터 도출과 머신 러닝 기반 사고 예측을 지원하는 특성화 데이터를 통합한 사회재난 및 안전사고 데이터 셋 구조를 도출하는 연구에 초점을 맞추었다. 연구방법: 기존 조사 분석 보고서의 사고 분류, 원인, 피해 등을 표시할 수 있는 데이터를 중심으로 머신 러닝에 활용할 수 있는 특성화 데이터 도출과 이에 대한 XML 기반의 표준 체계를 도출한다. 연구결과: XML 기반의 표준 스키마 도출과 사례 제시를 하였다. 결론: 본 논문에서 도출된 표준안을 사회재난 및 안전사고 데이터셋 구축에 활용하고, 이를 기반으로 여 러 분야에서 재난 사고 및 안전의 위험을 예측할 수 있는 응용 기술을 개발할 수 있게 지원한다.
목차
요약
서론
기존 연구 분석
사회재난 및 안전 연구 분석
사회재난 조사 예측 시스템 분석
사회재난 및 안전사고 데이터 설계
데이터 구조 설계
데이터 구조 설계
결론
Acknowledgement
References