earticle

논문검색

Geometric Mean-based Optimization Boosting for Bankruptcy Prediction

초록

영어

This paper proposes a novel geometric mean (GM) optimization-based boosting algorithm (GMOPTBoost) to improve the performance of boosting ensembles applied to solve the class imbalance problem in bankruptcy prediction. GMOPTBoost derives the best prediction by applying Gaussian gradient descent method to find the set of weights assigned to base classifiers to optimize GM. The main findings are as follows. First, the class imbalance problem has a negative effect on the performance. As IR values increase, the performances of boosting ensembles decreases. Second, GMOPTBoost makes a significant contribution to performance improvements of AdaBoost ensembles trained on imbalanced datasets.

목차

Abstract
Introduction
Learning Algorithms
Neural networks base classifiers
GMOPTBoost algorithm
Experimental Setup and Results
Sample and variable selection
Acknowledgments
References

저자정보

  • Myoung Jong Kim Faculty of School of Business,Pusan National University

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.
      ※ 학술발표대회집, 워크숍 자료집 중 4페이지 이내 논문은 '요약'만 제공되는 경우가 있으니, 구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.