earticle

논문검색

기계학습 모형을 이용한 전환사채 행사 시점에 관한 연구

원문정보

A Study on the Timing of Convertible Bonds Using the Machine Learning Model

유재필

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Convertible bonds are financial products that contain the nature of both bonds and shares, which are generally issued by companies with lower credit ratings to increase liquidity. Conversion bonds rely on qualitative judgment in the past, although decision-making on whether and when to exercise the right to convert is the most important issue. Therefore, this paper proposes to apply artificial neural network techniques to scientifically determine the exercise of conversion rights. We distinguish between a total of 1,800 learning data published in the past and 200 predictive experimental data and build an artificial neural network learning model. As a result, the parity performance in most groups was excellent, achieving an average excess of about 10% or more. In particular, groups 3-6 recorded an average excess of about 20% and group 6 recorded an average excess of about 37%. This paper is meaningful in that it focused on solving decision problems by converging and applying machine learning techniques, a representative technology of the fourth industry, to the financial sector.

한국어

전환사채는 채권과 주식의 성격을 모두 내포하고 있는 금융 상품인데 일반적으로 신용등급이 낮은 기업이 유동성을 확대하기 위해서 발행한다. 전환사채의 투자자와 발행 기업은 투자자의 전환권 행사 여부와 시점에 대한 의사결정 문제가 가장 중요한데 투자 판단 지표가 미약하기 때문에 정성적 판단에 의존한다. 따라서 본 논문은 과학적으로 전환권 행사 결정 문제에 인공신경망 기법을 적용하는 방안을 제안한다. 과거에 발행한 총 1,800개의 학습 데이터와 200개의 예측 실험 데이터로 구분을 하고 인공신경망 학습 모형을 구축한다. 그 결과 대부분의 그룹에서 패리티 성과가 우수하였고 평균 약 10% 이상의 초과 수익을 달성하였다. 특히 3~6 그룹에서는 평균 약 20% 이상의 초과 수익을 보였으며 그룹 6의 경우에는 약 37%의 초과 수익을 기록했다. 본 논문은 금융 분야에 4차 산업의 대표적 기술인 기계학습 기법을 융합·적용하여 의사결정 문제 해결에 집중했다는 것에서 의의가 있으 며 데이터 접근에 한계가 많은 전환사채 상품을 대상으로 실험을 했다는 점에서 향후 다양한 연구에서 참고 문헌 이 되기를 기대한다.

목차

요약
Abstract
1. 연구배경
2. 전환사채
2.1 이론적 배경
2.2 전환사채의 내재가치
3. 기계학습 모형
4. 실험계획 및 결과분석
4.1 실험계획
4.2 결과분석
5. 결론
REFERENCES

저자정보

  • 유재필 Jae Pil Ryu. 키스채권평가 차장

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.