earticle

논문검색

Technology Convergence (TC)

Analysis of Deep Learning Methods for Classification and Detection of Malware

원문정보

초록

영어

Recently, as the number of new and variant malicious codes has increased exponentially, malware warnings are being issued to PC and smartphone users. Malware is becoming more and more intelligent. Efforts to protect personal information are becoming more and more important as social issues are used to stimulate the interest of PC users and allow users to directly download malicious codes. In this way, it is difficult to prevent malicious code because malicious code infiltrates in various forms. As a countermeasure to solve these problems, many studies are being conducted to apply deep learning. In this paper, we investigate and analyze various deep learning methods to detect and classify malware.

목차

Abstract
1. INTRODUCTION
2. MALWARE AND DEEP LEARNING METHOD
2.1 Malware and Deep Learning
2.2 Deep Learning Methods
3. DEEP LEARNING METHODS FOR MALWARE CLASSIFICATION AND DETECTION
3.1 Wang and Yiu[9]
3.2 David and Netanyahu[10]
3.3 Hardy et al.[11]
3.4 McLaughlin et al.[12]
3.5 Kolosnjaji et al.[13]
3.6 Shibahara et al.[14]
3.7 Yuan et al.[15]
4. ANALYSIS OF DEEP LEARNING METHODS TOOLS FOR MALWARE CLASSIFICATION AND DETECTION
5. CONCLUSION
ACKNOWLEDGEMENT
REFERENCES

저자정보

  • Phil-Joo Moon Professor, Dept. of Information & Communications, Pyeongtaek University, Korea

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 원문제공기관과의 협약기간이 종료되어 열람이 제한될 수 있습니다.

      0개의 논문이 장바구니에 담겼습니다.