원문정보
2D+ Gan: GAN 기반 깊이 맵과 이미지 영역 분할을 사용하여 2D+ 이미지 생성
초록
영어
2D puzzles are popular board games. The technique of completing a 2D puzzle has been studied a lot. However, there is a limitation in that it is difficult to effectively express objects only with 2D. We present a 2D+ Lego puzzle generation algorithm that converts an input image into a 2D Lego puzzle with several bricks that represent heights. We employ a depth map estimation scheme and a semantic segmentation scheme for our purpose. We need to properly process the depth and segmentation information of various objects to apply to the 2D+ puzzle. For this reason, we apply deep learning models to the model to extract a depth map and a segmentation map. To extract the segmentation map, we adopted BiseNet learned with CelebAMask-HQ dataset. And DenseDepth learned with NYU Depth V2 dataset was used to obtain the depth map. We downsample the input image to a low-resolutional image and arrange the color information of the image according to the color palette of the allowable Lego bricks. We build a 2D+ pixel art image by corporating the low-resolutional images with the depth map and segmentation map. 2D+ lego puzzle is constructed from this 2D+ pixel art image by applying a greedy algorithm that seeks a largest Lego brick that can fit the candidate space.
한국어
2D 퍼즐은 인기있는 보드게임이다. 2D 퍼즐을 완성하는 기술은 많이 연구되었다. 하지만 2D만으로는 대상 을 효과적으로 표현하기 어렵다는 한계가 있다. 본 연구에서는 영상으로부터 높이를 가진 2D+ 레고 퍼즐을 생성하는 방법을 제안한다. 이를 위해서 본 연구에서는 영상의 높이 맵과 분할 맵의 정보를 활용한다. 우리 는 2D+ 퍼즐에 적용하기위해 다양한 대상의 높이 및 영역 정보를 적절하게 처리해야한다. 이러한 이유로, 우리는 깊이 맵과 분할영역 맵을 추출하기 위해 모델에 심층 학습 모델을 적용한다. 높이 맵을 추출하기 위 해 우리는 CelebAMask-HQ dataset으로 학습한 BiseNet을 채택했다. 그리고 분할 맵을 얻기 위해 NYU Depth V2 dataset으로 학습한 DenseDepth를 사용했다. 입력 영상에 대해서 저해상도 영상 및 높이 맵과 분할 맵을 추출하고, 저해상도 영상을 레고 브릭의 색 팔레트를 적용한 영상에 대해서 높이 맵과 분할 맵 정보를 적용해서 높이를 가진 2D+ 픽셀 아트 영상을 생성한다. 그리고, 이 픽셀 아트 영상에 대해서 같은 높이와 같은 색을 가진 픽셀들에 대해서 최대한 큰 브릭을 적용하는 그리디 알고리즘을 적용해서 2D+ 레 고 퍼즐을 완성한다. 본 연구에서는 다양한 초상화를 대상으로 2D+ 레고 퍼즐을 완성하는 예를 제시하였으 며, 그 중 하나를 직접 제작하여 그 결과를 제시한다.
목차
1. Introduction
2. Related Works
2.1 3D Lego puzzle.
2.2 2D Lego puzzle
2.3 Depth map and segmentation algorithm.
3. Research Overview
4. Method
4.1 Create an image that needs to be synthesized.
4.2 Depth and Segmentation Synthesizer
4.3 LC
5. Implementation and Results
6. Result
Acknowledgement
Reference
국문초록