원문정보
Analysis Method for Speeding Risk Exposure using Mobility Trajectory Big Data
초록
영어
Purpose: This study is to develop a method for measuring dynamic speeding risks using vehicle trajectory big data and to demonstrate the feasibility of the devised speeding index. Method: The speed behaviors of vehicles were analysed in microscopic space and time using individual vehicle trajectories, and then the boundary condition of speeding (i.e., boundary speed) was determined from the standpoint of crash risk. A novel index for measuring the risk exposure of speeding was developed in microscopic space and time with the boundary speed. Result: A validation study was conducted with vehicle-GPS trajectory big data and ground-truth vehicle crash data. As a result of the analysis, it turned out that the index of speeding-risk exposure has a strong explanatory power (R2=0.7) for motorway traffic accidents. This directly indicates that speeding behaviors should be analysed at a microscopic spatiotemporal dimension. Conclusion: The spatial and temporal evolution of vehicle velocity is very variable. It is, hence, expected that the method presented in this study could be efficaciously employed to analyse the causal factors of traffic accidents and the crash risk exposure in microscopic space using mobility trajectory data.
한국어
연구목적: 본 연구는 대용량 차량궤적 자료를 이용하여 동적 과속 위험성을 측정하기 위한 방법론을 개 발하고, 개발된 과속 지표의 적용성을 증명하는데 있다. 연구방법: 개별 차량 궤적을 이용하여 차량의 속도 변화를 미시적 시공간으로 분석하고, 사고 위험성 관점에서 과속의 경계(즉, 경계속도)를 결정하 였다. 결정된 경계속도를 이용하여 미시적 시공간 기반 과속 노출도 지표를 개발하였다. 연구결과: 검 증 연구는 대용량 차량 GPS 궤적 자료와 실제 교통사고 자료를 이용하여 수행되었다. 분석결과, 개발된 과속 노출도 지표는 고속도로 교통사고에 대해 우수한 설명력 (R2=0.7)을 보였다. 이는 미시적 시공간 차원에서 과속이 분석되어야 함을 직접적으로 의미한다. 결론: 차량 속도 상태의 시공간적 변화는 매우 가변적이다. 따라서 본 연구에서 제시된 방법론은 차량 궤적 자료를 이용한 미시적인 공간기반 교통사 고 요인 및 사고 위험 노출도 분석에 효과적으로 활용될 수 있을 것으로 판단된다.
목차
요약
서론
선행연구 고찰
분석 방법론
접근 개념
과속 노출도 분석방법
분석결과
자료 및 특성
파라미터 추정
시·공간적 과속 노출도 산정 및 평가
결론
Acknowledgement
References