원문정보
Design and Implementation of Facial Mask Wearing Monitoring System based on Open Source
초록
영어
The number of confirmed cases of coronavirus-19 is soaring around the world and has caused numerous deaths. Wearing a mask is very important to prevent infection. Incidents and accidents have occurred due to the recommendation to wear a mask in public places such as buses and subways, and it has emerged as a serious social problem. To solve this problem, this paper proposes an open source-based face mask wearing monitoring system. We used open source software, web-based artificial intelligence tool teachable machine and open source hardware Arduino. It judges whether the mask is worn, and performs commands such as guidance messages and alarms. The learning parameters of the teachable machine were learned with the optimal values of 50 learning times, 32 batch sizes, and 0.001 learning rate, resulting in an accuracy of 1 and a learning error of 0.003. We designed and implemented a mask wearing monitoring system that can perform commands such as guidance messages and alarms by determining whether to wear a mask using a web-based artificial intelligence tool teachable machine and Arduino to prove its validity.
한국어
코로나바이러스-19는 전 세계에서 확진자가 폭증하고 있으며 수많은 사망자를 발생시켰다. 마스크 착용은 감염 예방에 매우 중요하다. 버스, 지하철 등 공공장소에서 마스크 착용 권유로 인한 사건ㆍ사고가 발생하고 있으며 심각한 사회문제로 대두되고 있다. 이런 문제점을 해결하기 위해서 본 논문에서는 오픈소스 기반 안면 마스크 착용 모니터링 시스템을 제안한다. 오픈소스 소프트웨어인 웹기반 인공지능 툴 티처블머신과 오픈소스 하드웨어 아두이노를 사용하였 다. 마스크 착용여부를 판단하여 안내 메시지 및 알람 등 명령을 수행한다. 티처블머신의 학습파라미터 학습횟수 50, 배치크기 32, 학습률 0.001의 최적의 값으로 학습을 하여 정확성 1, 학습오차는 0.03의 결과 값을 얻었다. 웹기반 인공 지능 툴 티처블머신과 아두이노를 이용하여 마스크 착용여부를 판단하여 안내 메시지 및 알람 등 명령을 수행할 수 있는 마스크착용 모니터링 시스템을 설계 및 구현하여 타당성을 입증하였다.
목차
Abstract
Ⅰ. 서론
Ⅱ. 오픈소스
1. 오픈소스 하드웨어
2. 오픈소스 소프트웨어
Ⅲ. 모니터링 시스템
Ⅳ. 실험 및 결과
Ⅴ. 결론
References