원문정보
Analysis of Drought Vulnerable Areas using Neural-Network Algorithm
초록
영어
Purpose: In this paper, using artificial neural network algorithm, the Korean Peninsula was analyzed for drought vulnerable areas by predicting weather data changes. Method: Monthly cumulative precipitation data were utilized for research areas considering the specific nature areas, and weather data prediction through artificial neural network algorithm was carried out using statistical program R. The predicted data were applied to the Standardized Precipitation Index (SPI) to analyze drought vulnerable areas in the Korean Peninsula. Result: In this paper, the correlation coefficient values between real and predicted data are found to be 0.043879 higher on average than the regression results, using artificial neural network algorithms. Conclusion: The results of the research are expected to be used as basic research materials for responding to drought.
한국어
연구목적: 본 연구는 인공신경망 라이브러리 기술을 이용하여, 기상 데이터 변화 예측을 통한 한반도 가 뭄 취약지역 분석을 목적으로 하였다. 연구방법: 연구지역 중 북한 지역의 다양한 기상데이터의 확보가 힘든 특수성을 고려하여 연구지역의 월별 누적강수량 데이터를 활용하였으며, 통계프로그램 R을 이용 하여 인공신경망 알고리즘을 통한 기상데이터 추정을 수행하였다. 연구결과: 본 논문에서 진행한 연구 결과, 실제 데이터와 예측 데이터 간의 상관계수 값은 인공신경망 알고리즘을 활용한 결과가 회귀분석 결과보다 평균 0.043879 더 높은 것으로 확인되었다. 결론: 연구의 결과는 가뭄 대응을 위한 재난대응 기초 연구 자료로 활용 가능할 것으로 기대한다.
목차
요약
서론
이론적 배경
가뭄
인공신경망
연구내용
연구지역 선정
데이터 수집
인공신경망 알고리즘의 학습 및 분석
인공신경망 알고리즘 기반 예측 및 SPI 계산
연구 결과
결론
Acknowledgement
References