원문정보
초록
영어
Recent deep learning-based natural language processing studies are conducting research to improve performance by training large amounts of data from various sources together. However, there is a possibility that the methodology of learning by combining data from various sources into one may prevent performance improvement. In the case of machine translation, data deviation occurs due to differences in translation(liberal, literal), style(colloquial, written, formal, etc.), domains, etc. Combining these corpora into one for learning can adversely affect performance. In this paper, we propose a new Corpus Weight Balance(CWB) method that considers the balance between parallel corpora in machine translation. As a result of the experiment, the model trained with balanced corpus showed better performance than the existing model. In addition, we propose an additional corpus construction process that enables coexistence with the human translation market, which can build high-quality parallel corpus even with a monolingual corpus.
한국어
최근 딥러닝 기반 자연언어처리 연구들은 다양한 출처의 대용량 데이터들을 함께 학습하여 성능을 올리고자 하는 연구들을 진행하고 있다. 그러나 다양한 출처의 데이터를 하나로 합쳐서 학습시키는 방법론은 성능 향상을 막게 될 가능성이 존재한다. 기계번역의 경우 병렬말뭉치 간의 번역투(의역, 직역), 어체(구어체, 문어체, 격식체 등), 도메인 등의 차이로 인하여 데이터 편차가 발생하게 되는데 이러한 말뭉치들을 하나로 합쳐서 학습을 시키게 되면 성능의 악영 향을 미칠 수 있다. 이에 본 논문은 기계번역에서 병렬말뭉치 간의 균형성을 고려한 Corpus Weight Balance (CWB) 학습 방법론을 제안한다. 실험결과 말뭉치 간의 균형성을 고려한 모델이 그렇지 않은 모델보다 더 좋은 성능을 보였다. 더불어 단일 말뭉치로도 고품질의 병렬 말뭉치를 구축할 수 있는 휴먼번역 시장과의 상생이 가능한 말뭉치 구축 프로세 스를 추가로 제안한다.
목차
Abstract
1. 서론
2. Corpus Weight Balance 학습 방법론
3. 기계번역 학습용 데이터 구축 방안 제안
4. 실험 및 실험결과
4.1 데이터 및 모델
4.2 실험결과
5. Conclusion
REFERENCES