원문정보
초록
영어
Pervasive enhancement and required enforcement of the Internet of Things (IoTs) in a distributed massively multiplayer online architecture have effected in massive growth of Big-Data in terms of server over-load. There have been some previous works to overcome the overloading of server works. However, there are lack of considered methods, which is commonly applicable. Therefore, we propose a combing Sparse Auto-Encoder and Load-Balancing, which is ProGReGA for Big-Data of server loads. In the process of Sparse Auto-Encoder, when it comes to selection of the feature-pattern, the less relevant feature-pattern could be eliminated from Big-Data. In relation to Load-Balancing, the alleviated degradation of ProGReGA can take advantage of the less redundant feature-pattern. That means the most relevant of Big-Data representation can work. In the performance evaluation, we can find that the proposed method have become more approachable and stable.
목차
1. INTRODUCTION
2. RELATED WORKS
3. THE PROPOSED ALGORITHM
4. PERFORMANCE EVALUATION
5. CONCLUSION
REFERENCES