원문정보
초록
영어
The Incheon airport is a gateway to and from the Republic of Korea and has a great influence on the image of the country. Therefore, it is necessary to predict the number of airport passengers in the long term in order to maintain the quality of service at the airport. In this study, we compared the predictive performance of various time series models to predict the air passenger demand at Incheon Airport. From 2002 to 2019, passenger data include trend and seasonality. We considered the naive method, decomposition method, exponential smoothing method, SARIMA, PROPHET. In order to compare the capacity and number of passengers at Incheon Airport in the future, the short-term, mid-term, and long-term was forecasted by time series models. For the short-term forecast, the exponential smoothing model, which weighted the recent data, was excellent, and the number of annual users in 2020 will be about 73.5 million. For the medium-term forecast, the SARIMA model considering stationarity was excellent, and the annual number of air passengers in 2022 will be around 79.8 million. The PROPHET model was excellent for long-term prediction and the annual number of passengers is expected to be about 99.0 million in 2024.
한국어
인천공항은 대한민국으로 들어오거나 나가는 관문으로 나라의 이미지에 큰 영향을 미치므로 공항의 서비스 질을 유지하기 위해선 장기적인 공항 이용객 수 예측이 필요하다. 본 연구에서는 인천공항의 이용객 수요를 예측하기 위한 다양한 시계열 모형의 예측성능을 비교하였다. 인천공항 이용객 자료를 2002년 1월부터 2019년 12월까지 월 단위로 수집하여 살펴보면 일반적인 시계열자료에서 보이는 추세성과 계절성을 지니고 있다. 본 연구에서는 추세성과 계절성이 고려된 나이브 기법, 분해법, 지수 평활법, SARIMA, 그리고 PROPHET을 이용하여 단기, 중기, 장기예측 시계열모형을 비교하였다. 분석결과 단기예측은 최근 자료에 가중치를 준 지수 평활법이 우수했고 예상 2020년 연간 이용객 수는 약 7,350만명이다. 3년 후 인 2022년 중기예측은 정상성이 고려된 SARIMA모형이 우수하였고 예상 연간 이용객 수는 약 7,980만명이다. 4단계 인천공항 건설사업이 완료되는 2024년 예상 연간 여객수용 인원은 9,910만명이고 PROPHET모형이 가장 우수하였다.
목차
Abstract
1. 서론
2. 이론적 배경
2.1 인천공항의 역할
2.2 공항 인프라와 서비스 품질
3. 연구방법론
3.1 나이브 기법
3.2 분해법
3.3 지수 평활법
3.4 SARIMA
3.5 PROPHET
3.6 예측 정확도
4. 연구자료
5. 연구결과
5.1 단기예측
5.2 중기예측
5.3 장기예측
6. 결론 및 논의
REFERENCES
