earticle

논문검색

패션 트렌드의 주기적 순환성에 관한 빅데이터 융합 분석

원문정보

The Analysis of Fashion Trend Cycle using Big Data

김기현, 변혜원

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

In this paper, big data analysis was conducted for past and present fashion trends and fashion cycle. We focused on daily look for ordinary people instead of the fashion professionals and fashion show. Using the social matrix tool, Textom, we performed frequency analysis, N-gram analysis, network analysis and structural equivalence analysis on the big data containing fashion trends and cycles. The results are as follows. First, this study extracted the major key words related to fashion trends for the daily look from the past(1980s, 1990s) and the present(2019 and 2020). Second, the frequence analysis and N-gram analysis showed that the fashion cycle has shorten to 30-40 years. Third, the structural equivalence analysis found the four representative clusters. The past four clusters are jean, retro codi, athleisure look, celebrity retro and the present clusters are retro, newtro, lady chic, retro futurism. Fourth, through the network analysis and N-gram analysis, it turned out that the past fashion is reproduced and evolves to the current fashion with certain reasoning.

한국어

본 논문은 과거와 현재의 패션 트렌드와 패션 유행 주기에 관한 빅데이터 분석을 실시하였다. 패션 전문가나 패션쇼가 아닌 일반 사람들의 데일리룩을 위한 패션 트렌드를 분석하는데 집중하였다. 소셜 매트릭스 도구인 텍스톰을 활용하여 빈도수 분석, N-gram 분석, 네트워크 분석 및 구조적 등위성 분석을 수행하였다. 분석 결과, 첫째, 패션 전문 가가 아닌 일반 사람들의 데일리 룩을 대상으로 과거(1980년대, 1990년대)와 현재(2019년, 2020년)의 패션 키워드를 도출하였다. 둘째, 과거의 패션이 현재의 패션으로 재현되는 순환성과 순환 주기가 30-40년 정도로 짧아졌음을 빅데이 터 분석을 통해 과학적으로 검증하였다. 셋째, 도출된 패션 키워드들의 구조적 등위성 분석을 수행한 결과, 과거 패션에 서는 청바지 패션, 레트로 코디, 애슬레저룩, 연예인 복고패션의 4개의 군집으로, 현재 패션에서는 레트로 청바지, 뉴트 로, 레이디 쉬크, 레트로 퓨처리즘의 4개의 군집을 확인하였다. 넷째, 과거의 패션이 현재의 패션으로 재현되고 진화하 는 네트워크 연결 관계를 확인하고 그 배경에 관한 이슈를 고찰하였다. 이와 같은 연구결과는 과거와 현재의 패션 키워 드를 도출하고 이로부터 패션 유행의 순환 주기를 확인함으로써 과거를 통해 미래 패션을 예측하도록 하는데 의의가 있다.

목차

요약
Abstract
1. 서론
2. 관련연구
2.1 패션 트렌드
2.2 텍스트 마이닝
2.3 패션 트렌드에 관한 텍스트 마이닝
3. 연구방법
3.1 자료 수집
3.2 분석방법
4. 연구결과
4.1 빈도분석 결과
4.2 N-gram 분석 결과
4.3 네트워크 분석 결과
4.4 구조적 등위성 분석 결과
5. 결론 및 향후 연구방향
REFERENCES

저자정보

  • 김기현 Ki-Hyun Kim. 성신여자대학교 정보시스템공학과 학생
  • 변혜원 Hae-Won Byun. 성신여자대학교 정보시스템공학과 교수

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,200원

      0개의 논문이 장바구니에 담겼습니다.