earticle

논문검색

포스트에디팅 결과물에 나타난 오류 고찰 - AI 학습용 한영 번역 말뭉치를 대상으로

원문정보

A Study on Errors in Post-edited MT Output, Focusing on Korean-English Parallel Translation Corpus for AI Training.

김자경

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

With a keen interest in the quality of MT output, errors in raw MT output have received much attention in domestic translation studies. However, errors in post-edited output have rarely been discussed, although a considerable amount of errors in raw MT output remain uncorrected even after the post-editing task. Against this backdrop, this study aims to investigate errors in post-edited output with Korean-English parallel translation corpus for AI training, released in 2019 by the National Information Society Agency. For this purpose, 300 parallel sentences with errors were collected in economic news corpus and then classified by error type. Analysis results showed a wide array of errors ranging from accuracy to readability, indicating the need to examine errors in post-edited output and major factors affecting the post-editing process.

목차


1. 서론
2. 선행연구
2.1. 기계번역 결과물의 오류 분석
2.2. 포스트에디팅 결과물의 오류 분석
3. 연구 방법
4. 분석 결과
4.1. 충실성
4.2. 가독성
5. 결론
참고문헌

저자정보

  • 김자경 Kim, Ja-gyeong. 이화여자대학교

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 6,700원

      0개의 논문이 장바구니에 담겼습니다.