원문정보
A Study on the Document Topic Extraction System Based on Big Data
초록
영어
Nowadays, the use of smart phones and various electronic devices is increasing, the Internet and SNS are activated, and we live in the flood of information. The amount of information has grown exponentially, making it difficult to look at a lot of information, and more and more people want to see only key keywords in a document, and the importance of research to extract topics that are the core of information is increasing. In addition, it is also an important issue to extract the topic and compare it with the past to infer the current trend. Topic modeling techniques can be used to extract topics from a large volume of documents, and these extracted topics can be used in various fields such as trend prediction and data analysis. In this paper, we inquire the topic of the three-year papers of 2016, 2017, and 2018 in the field of computing using the LDA algorithm, one of Probabilistic Topic Model Techniques, in order to analyze the rapidly changing trends and keep pace with the times. Then we analyze trends and flows of research.
한국어
요즘 스마트폰, 각종 전자기기 등의 사용이 늘고, 인터넷과 SNS가 활성화되며 우리는 정보의 홍수 속에 살고 있다. 정보의 양이 기하급수적으로 증가하며 많은 정보를 다 살펴보는 것이 어려워졌고, 문서에서 핵심 키워드만 보기를 원하는 사람이 늘어나며 정보의 핵심이 되는 토픽을 추출하는 연구의 중요성이 증가하고 있다. 또한, 토픽을 추출하여 과거와 비교 분석하여 현재의 트렌드를 유추해내는 것도 최근 중요한 이슈이다. 토픽 모델링 기법을 이용하여 대량의 문서에서 토픽을 추출해낼 수 있으며, 이렇게 추출된 토픽은 트렌드 예측, 데이터 분석 등 다양한 분야에서 쓰일 수 있다. 본 논문에서는 빠르게 변하는 트렌드를 분석하여 시대의 흐름에 맞춰가기 위해 확률적 토픽 모델 기법의 하나인 LDA 알고리즘을 활용하였으며, 문서에서 컴퓨팅 분야의 2016, 2017, 2018년도 3개년 논문의 주제를 알아보고, 연구의 동향 과 흐름을 분석한다.
목차
Abstract
Ⅰ. 서론
Ⅱ. LDA
1. LDA의 개념
2. LDA의 핵심 가정
3. 깁스 샘플링
4. LDA의 과정
Ⅲ. 시스템 구조 및 상세 프로세스
1. 빅데이터 처리 프로세스
2. 빅데이터 분석 프로세스
3. 웹 시각화 프로세스
Ⅳ. 결론
References
