원문정보
초록
영어
The purpose of this study is to understand the public needs for AI education actively promoted and supported by the current government. In doing so, 11 metropolitan news articles and Twitter posts regarding AI education that have been posted from January 1, 2018 to December 31, 2019 were collected. Then, word frequency analysis using TF(Term Frequency) method and LDA(Latent Dirichlet Allocation) method of topic modeling analysis were conducted. The topics of the news articles turn out to be a macroscopic policy support such as ‘training female manpower in the AI field’ and ‘curriculum reform of university and K-12’, whereas the topics of twitter delineate more detailed social perception on future society, such as future competencies and pedagogical methods, including ‘coexistence with intelligent robots’, ‘coding education’, and ‘humane education competence development’. The findings are expected to be used to suggest the implications for the composition and management of AI curriculum as well as the basic framework of human resources development in the future industry.
한국어
본 연구는 현 정부가 적극적으로 추진ㆍ지원하는 AI교육에 관한 대중의 요구를 파악하는 데 그 목적이 있다. 이를 위해 2018년 1월 1일부터 2019년 12월 31까지 AI교육에 대한 11개의 중앙지 뉴스기사와 트위터 게시글을 수집 하여 단어 빈도분석과 토픽모델링분석을 실시하였다. 단어빈도 분석은 TF(Term Frequency)기법을, 토픽모델링분석은 잠재 디리클레 할당(Latent Dirichlet Allocation)기법을 사용하였다. 분석결과, 뉴스기사는 AI분야의 여성인재 육성, 대학교육과정의 변화, K-12의 소프트웨어 교육 및 교육과정 변화 등 거시적인 정책 지원에 대한 토픽이, 트위터에서는 지능형로봇과의 공존시대와 같은 보다 구체적인 미래시대에 대한 사회적 인식과 코딩교육, 인간의 고유역량개발 등과 같은 미래역량과 교육방법론 등에 대한 토픽이 도출되었다. 이러한 연구결과는 AI교육과정 구성 및 운영 방안과 미래 산업 인재 양성 정책 개발을 위한 시사점을 제공해 줄 수 있을 것으로 기대한다.
목차
Abstract
1. 서론
2. 연구방법
2.1 자료 수집
2.2 데이터 전처리
2.3 분석 방법
3. 연구결과
3.1 워드 클라우드(Word Cloud) 분석 결과
3.2 토픽 모델링(Topic Modelling)
4. 결론 및 논의
REFERENCES