earticle

논문검색

심층 학습을 활용한 가상 치아 이미지 생성 연구 – 학습 횟수를 중심으로

원문정보

A Study on Virtual Tooth Image Generation Using Deep Learning – Based on the number of learning

배은정, 정준호, 손윤식, 임중연

피인용수 : 0(자료제공 : 네이버학술정보)

초록

영어

Purpose: Among the virtual teeth generated by Deep Convolutional Generative Adversarial Networks (DCGAN), the optimal data was analyzed for the number of learning. Methods: We extracted 50 mandibular first molar occlusal surfaces and trained 4,000 epoch with DCGAN. The learning screen was saved every 50 times and evaluated on a Likert 5-point scale according to five classification criteria. Results were analyzed by one-way ANOVA and tukey HSD post hoc analysis (α = 0.05). Results: It was the highest with 83.90±6.32 in the number of group3 (2,050-3,000) learning and statistically significant in the group1 (50-1,000) and the group2 (1,050-2,000). Conclusion: Since there is a difference in the optimal virtual tooth generation according to the number of learning, it is necessary to analyze the learning frequency section in various ways.

목차

[Abstract]
Ⅰ. 서론
Ⅱ. 연구 방법
1. 실험방법
2. 분석방법
Ⅲ. 결과
Ⅳ. 고찰
Ⅴ. 결론
REFERENCES

저자정보

  • 배은정 EunJeong Bae. 동국대학교 기계로봇에너지공학과
  • 정준호 Junho Jeong. 공주대학교 컴퓨터공학과
  • 손윤식 Yunsik Son. 동국대학교 컴퓨터공학과
  • 임중연 JoonYeon Lim. 동국대학교 기계로봇에너지공학과

참고문헌

자료제공 : 네이버학술정보

    함께 이용한 논문

      ※ 기관로그인 시 무료 이용이 가능합니다.

      • 4,000원

      0개의 논문이 장바구니에 담겼습니다.