열화상 이미지를 이용한 배전 설비 검출 및 진단


Detection and Diagnosis of Power Distribution Supply Facilities Using Thermal Images

김주식, 최규남, 이형근, 강성우

피인용수 : 0(자료제공 : 네이버학술정보)



Maintenance of power distribution facilities is a significant subject in the power supplies. Fault caused by deterioration in power distribution facilities may damage the entire power distribution system. However, current methods of diagnosing power distribution facilities have been manually diagnosed by the human inspector, resulting in continuous pole accidents. In order to improve the existing diagnostic methods, a thermal image analysis model is proposed in this work. Using a thermal image technique in diagnosis field is emerging in the various engineering field due to its non-contact, safe, and highly reliable energy detection technology. Deep learning object detection algorithms are trained with thermal images of a power distribution facility in order to automatically analyze its irregular energy status, hereby efficiently preventing fault of the system. The detected object is diagnosed through a thermal intensity area analysis. The proposed model in this work resulted 82% of accuracy of detecting an actual distribution system by analyzing more than 16,000 images of its thermal images.


1. 서론
2. 이론적 배경
2.1 배전 설비의 유지보수
2.2 열화상 이미지를 이용한 설비 진단
2.3 Faster R-CNN을 이용한 객체 검출
3. 방법론
3.1 데이터 수집 및 전처리
3.2 객체 검출 모델
3.3 열화상 온도 분석 모델
4. 실험
4.1 데이터 수집 및 전처리
4.2 객체 검출 모델 훈련 및 평가
4.3 열화상 온도 분석 모델
5. 결론 및 향후 연구
6. References


  • 김주식 Joo-Sik Kim. 한국수력원자력(주)
  • 최규남 Kyu-Nam Choi. 인하대학교 산업공학과
  • 이형근 Hyung-Geun Lee. 인하대학교 산업공학과
  • 강성우 Sung-Woo Kang. 인하대학교 산업공학과


자료제공 : 네이버학술정보

    ※ 기관로그인 시 무료 이용이 가능합니다.

    • 4,000원

    0개의 논문이 장바구니에 담겼습니다.